54 research outputs found

    Biofilter as pretreatment to membrane based desalination: Evaluation in terms of fouling index

    Full text link
    The removal of particulate matter and dissolved organic matter from seawater by the use of biofiltration was investigated. Granular activated carbon (GAC) and anthracite were used as biofilter media at two different filtration velocities. Filtrate quality was measured in terms of silt density index (SDI), modified fouling index (MFI) and turbidity removal. Reverse osmosis (RO) was used as a post-treatment. Both biofilters demonstrated similar fouling reduction behavior in terms of SDI and MFI. Fouling potential in terms of MFI values decreased to 10 s/L2 within the first 10-15 days of operation and kept constant up to the remaining experimental period of 55 days of operation for both GAC and anthracite biofilter. The filtrate turbidity was steady after 10 days and remained low at a value of 0.2-0.3 NTU and 0.28-0.31 NTU for anthracite and GAC biofilter, respectively. Furthermore, the headloss development was low and within 20 cm for biofilter operated at a low velocity of 5 m/h. A post-treatment of reverse osmosis after a pretreatment of GAC and anthracite biofilters showed a reduction in normalized flux decline (J/J0) from 0.22 to 0.12 and 0.35 to 0.21 during the first 20 h, respectively. The RO flux for seawater declined at a faster rate and continued even after 3 days when no pretreatment was provided. Β© 2009

    Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    Get PDF
    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses

    Analyst information precision and small earnings surprises

    Get PDF
    This study proposes and tests an alternative to the extant earnings management explanation for zero and small positive earnings surprises (i.e., analyst forecast errors). We argue that analysts’ ability to strategically induce slight pessimism in earnings forecasts varies with the precision of their information. Accordingly, we predict that the probability that a firm reports a small positive instead of a small negative earnings surprise is negatively related to earnings forecast uncertainty, and we present evidence consistent with this prediction. Our findings have important implications for the earnings management interpretation of the asymmetry around zero in the frequency distribution of earnings surprises. We demonstrate how empirically controlling for earnings forecast uncertainty can materially change inferences in studies that employ the incidence of zero and small positive earnings surprises to categorize firms as suspected of managing earnings

    Three-dimensional simulation of the vertical displacement event in tokamaks

    No full text
    Tokamak plasmas with highly elongated cross sections are subject to a vertical displacement event (VDE). The nonlinear magnetohydrodynamic (MHD) evolutions of tokamak plasmas during VDE are visualized by a three-dimensional MHD simulation. The nonlinear evolution during VDE is strongly affected by the relative amplitude of the nonaxisymmetric to the axisymmetric mode.X112sciescopu

    Supracondylar process syndrome: two cases of median nerve neuropathy due to compression by the ligament of Struthers

    No full text
    Hyun-Chul Shon, Ji-Kang Park, Dong-Soo Kim, Sang-Woo Kang, Kook-Jong Kim, Seok-Hyun Hong Department of Orthopaedic Surgery, Chungbuk National University Hospital, Chungbuk National University, Cheongju, Korea Abstract: The supracondylar process is a beak-shaped bony process on the anteromedial aspect of the distal humerus. The ligament of Struthers is a fibrous band extending from the tip of the process to the medial epicondyle. The median nerve and brachial artery pass under the ligament of Struthers and consequently can be compressed, causing supracondylar process syndrome. As a rare cause of proximal median nerve entrapment, supracondylar process syndrome is triggered when the median nerve is located in the superficial or deep layer of the ligament of Struthers as a result of anatomical variation. The supracondylar process can be easily detected on X-ray images obtained in oblique views but may not be identified in only anteroposterior or lateral views. In this article, we present 2 cases of supracondylar process syndrome and describe the process of diagnosis and treatment and results of a literature review. Keywords: supracondylar process syndrome, ligament of Struthers, median nerve, nerve entrapment&nbsp

    Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning

    Full text link
    Β© 2015 Elsevier Ltd. In the present study, a magnetic nanofibrous composite mat composed of polystyrene (PS)/polyvinylidene fluoride (PVDF) nanofibers with selective incorporation of iron oxide (Fe3O4) nanoparticles (NPs) on/in PS was successfully prepared via a facile two-nozzle electrospinning process for oil-in-water separation. Field emission scanning electron microscopy and infrared spectroscopy showed the mats to be highly-porous in structure and confirmed the presence of the Fe3O4 NPs on/in the nanofibers. Both PS and PVDF nanofibers exhibited oleophilic and hydrophobic properties. The results showed improved mechanical properties when PVDF was added to the composite mat compared to the pristine PS mat. In addition, the incorporation of magnetic Fe3O4 NPs in the composite mat helps in the easy recovery of the mats after the oil-in-water sorption process. The composite mats showed good oil sorption capacity (35-46 g/g) and improved mechanical property. The present electrospun magnetic PVDF/Fe3O4@PS nanofibers could be potentially useful for the efficient removal of oil in water and recovery of sorbent material

    Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation

    Full text link
    Β© 2015 Elsevier B.V. In the present study, dual-layer nanofiber nonwoven membranes were prepared by a facile electrospinning technique and applied for desalination by air gap membrane distillation (AGMD). Neat single and dual-layer nanofiber membranes composed of a hydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PH) top layer with different supporting hydrophilic layer made of either polyvinyl alcohol (PVA), nylon-6 (N6), or polyacrylonitrile (PAN) nanofibers were fabricated with and without heat-press post-treatment. Surface characterization showed that the active layer (i.e., PH) of all electrospun nanofiber membranes (ENMs) exhibited a rough, highly porous (> 80% porosity), and hydrophobic surface (CA > 140Β°), while the other side was hydrophilic (CA 129 ΞΌm to < 100 ΞΌm) and smaller pore sizes (< 0.27 ΞΌm). The AGMD experiments in a co-current flow set-up were carried out with constant inlet temperatures at the feed and permeate streams of 60 Β± 1.5 and 20 Β± 1.5Β° C, respectively. The AGMD module had a membrane area of 21 cm2 and the thickness of the air gap was 3 mm. The neat single and dual-layer ENMs showed a water permeate flux of about 10.9–15.5 L/m2 h (LMH) using 3.5 wt.% NaCl solution as feed, which was much higher than that of a commercial PVDF membrane (~ 5 LMH). The provision of a hydrophilic layer at the bottom layer enhanced the AGMD performance depending on the wettability and characteristics of the support layer. The PH/N6 dual-layer nanofiber membrane prepared under the optimum condition showed flux and salt rejection of 15.5 LMH and 99.2%, respectively, which has good potential for AGMD application

    Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves

    Full text link
    Β© 2016 Elsevier B.V. Electrospun composite nanofiber (NF) was fabricated and employed as an adsorbent membrane filter in a continuous Li+ mining process from seawater. The filter was composed of a hydrophilic polyacrylonitrile (PAN) matrix infused with lithium ion sieves (LIS) H1.6Mn1.6O4. Characterization of the LIS/PAN NF confirmed its favorable structural and surface properties for effective Li+ adsorption. The LIS/PAN NF was mechanically suitable as a microfiltration membrane with high water flux and low pressure requirement. Breakthrough experiments at varied feed concentrations (Cf), seawater flowrates (F), and NF thicknesses (Z) revealed the dynamic adsorption behavior of the filter. The seawater residence time was most critical and must be kept β©Ύ0.12 min at any given Cf and Z to maximize the Li+ capacity of the filter. This can be conveniently achieved by adjusting the F of the process. Analogous to a packed bed system, the predictive power of nine breakthrough models were determined through non-linear regression analyses. Results reveal that bed-depth-space-time, Bohart-Adams (BA) and Thomas models adequately predicted the performance of the filter albeit BA exhibited the best agreement. Meanwhile, Wolborska failed to converge with any of the experimental results while Yoon-Nelson, Wang, Clark, dose-response, and modified dose-response were too simple to provide any meaningful information. Cycled Li+ adsorption-desorption runs successfully collected and concentrated Li+ in a mild acid stripping solution. After ten cycles, Li+ was separated 155–1552 times more efficiently than Na+, K+, Mg2+ and Ca2+. Overall results demonstrate the potential of LIS/PAN NF as an adsorbent membrane filter for continuous Li+ mining from aqueous resources
    • …
    corecore