48 research outputs found

    Inter-Allelic Prion Propagation Reveals Conformational Relationships among a Multitude of [PSI] Strains

    Get PDF
    Immense diversity of prion strains is observed, but its underlying mechanism is less clear. Three [PSI] prion strains—named VH, VK, and VL—were previously isolated in the wild-type yeast genetic background. Here we report the generation and characterization of eight new [PSI] isolates, obtained by propagating the wild-type strains with Sup35 proteins containing single amino-acid alterations. The VH strain splits into two distinct strains when propagated in each of the three genetic backgrounds, harboring respectively single mutations of N21L, R28P, and Gi47 (i.e. insertion of a glycine residue at position 47) on the Sup35 N-terminal prion-forming segment. The six new strains exhibit complex inter-conversion patterns, and one of them continuously mutates into another. However, when they are introduced back into the wild-type background, all 6 strains revert to the VH strain. We obtain two more [PSI] isolates by propagating VK and VL with the Gi47 and N21L backgrounds, respectively. The two isolates do not transmit to other mutant backgrounds but revert to their parental strains in the wild-type background. Our data indicate that a large number of [PSI] strains can be built on three basic Sup35 amyloid structures. It is proposed that the three basic structures differ by chain folding topologies, and sub-strains with the same topology differ in distinct ways by local structural adjustments. This “large number of variations on a small number of basic themes” may also be operative in generating strain diversities in other prion elements. It thus suggests a possible general scheme to classify a multitude of prion strains

    Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress

    Get PDF
    α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Arachidonic acid pathway alterations in cerebrospinal fluid of dogs with naturally occurring spinal cord injury

    Get PDF
    BACKGROUND: Canine intervertebral disc πherniation causes a naturally-occurring spinal cord injury (SCI) that bears critical similarities to human SCI with respect to both injury pathomechanisms and treatment. As such, it has tremendous potential to enhance our understanding of injury biology and the preclinical evaluation of novel therapies. Currently, there is limited understanding of the role of arachidonic acid metabolites in canine SCI. RESULTS: The CSF concentrations of PLA2 and PGE2 were higher in SCI dogs compared to control dogs (p = 0.0370 and 0.0273, respectively), but CSF LCT4 concentration in SCI dogs was significantly lower than that in control dogs (p < 0.0001). Prostaglandin E2 concentration in the CSF was significantly and positively associated with increased severity of SCI at the time of sampling (p = 0.041) and recovery 42 days post-injury (p = 0.006), as measured by ordinal behavioral scores. CONCLUSION: Arachidonic acid metabolism is altered in dogs with SCI, and these data suggest that these AA metabolites reflect injury severity and recovery, paralleling data from other model systems

    Allergen-independent immunostimulatory sequence oligodeoxynucleotide therapy attenuates experimental allergic rhinitis

    No full text
    While effective for the prevention and treatment of allergic rhinitis (AR) symptoms, currently available medications do not reverse allergen specific hypersensitivities. Therefore, pharmacotherapeutics are not curative and their daily use is often required for years. These investigations were conducted to determine whether immunostimulatory sequence oligodeoxynucleotide (ISS-ODN) delivery protects previously sensitized mice from AR hypersensitivity responses and modulates their allergen specific immune profiles. Mice were first sensitized with ovalbumin (OVA) and alum, twenty-four hr before beginning a series of seven daily intranasal (i.n.) allergen challenges, subsets of mice received a single i.n. or intradermal (i.d.) dose of ISS-ODN or control oligodeoxynucleotide (C-ODN), a single intraperitoneal (i.p.) injection of dexamethasone (DXM), or no intervention. Mice receiving i.d. or i.n. ISS-ODN were found to have attenuated immediate and late phase effector cell responses to i.n. OVA challenge. Specifically, ISS-ODN treated mice had less histamine and cysteinyl leukotriene release and eosinophilic inflammation in their nasal passages than mice treated with C-ODN. In addition, splenocytes from ISS-ODN but not C-ODN treated mice displayed attenuated OVA-specific interleukin (IL)-4, IL-5, and IL-13 but increased interferon-γ responses. Finally, ISS-ODN was generally a more effective treatment than DXM, both in blunting AR hypersensitivity responses and in shifting T helper 2 Th2-biased immune parameters towards Th1 dominance. As ISS-ODN delivery rapidly attenuated effector cell responses in this AR model in an allergen independent manner, the present results suggest that therapy with ISS-ODN alone may be an effective alternative to corticosteroid medications for the clinical management of AR
    corecore