82 research outputs found
Reducing bias in auditory duration reproduction by integrating the reproduced signal
Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability
Artificial Gravity Reveals that Economy of Action Determines the Stability of Sensorimotor Coordination
Background: When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system
The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities
Distinct Timing Mechanisms Produce Discrete and Continuous Movements
The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to accomplish varying behavioral functions such as speed constraints
Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics
Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI—Virtual Partner Interaction—a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms
Metabolic changes in concussed American football players during the acute and chronic post-injury phases
<p>Abstract</p> <p>Background</p> <p>Despite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations.</p> <p>Methods</p> <p>The present study investigated the effects of sports concussion on brain metabolism using <sup>1</sup>H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.</p> <p>Results</p> <p>Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase.</p> <p>Conclusions</p> <p>These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.</p
Taking two to tango:fMRI analysis of improvised joint action with physical contact
<div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div
A parametric fMRI investigation of context effects in sensorimotor timing and coordination
Mounting evidence suggests that information derived from environmental and behavioral sources is represented and maintained in the brain in a context-dependent manner. Here we investigate whether activity patterns underlying movements paced according to an internal temporal representation depend on how that representation is acquired during a previous pacing phase. We further investigate the degree to which context dependence is modulated by different time delays between pacing and continuation. BOLD activity was recorded while subjects moved at a rate established during a pacing interval involving either synchronized or syncopated coordination. Either no-delay or a 3, 6 or 9 s delay was introduced prior to continuation. Context-dependent regions were identified when differences in neural activity generated during pacing continued to be observed during continuation despite the intervening delay. This pattern was observed in pre-SMA, bilateral lateral premotor cortex, bilateral declive and left inferior semi lunar lobule. These regions were more active when continuation followed from syncopation than from synchronization regardless of the delay length putatively revealing a context-dependent neural representation of the temporal interval. Alternatively, task related regions in which coordination-dependent differences did not persist following the delay, included bilateral putamen and supplementary-motor-area. This network may support the differential timing demands of coordination. A classic prefrontal–parietal–temporal working memory network was active only during continuation possibly providing mnemonic support for actively maintaining temporal information during the variable delay. This work provides support for the hypothesis that some timing information is represented in a task-dependent manner across broad cortical and subcortical networks
- …