667 research outputs found

    Skeletal Site-Related Variation in Human Trabecular Bone Transcriptome and Signaling

    Get PDF
    BACKGROUND: The skeletal site-specific influence of multiple genes on bone morphology is recognised, but the question as to how these influences may be exerted at the molecular and cellular level has not been explored. METHODOLOGY: To address this question, we have compared global gene expression profiles of human trabecular bone from two different skeletal sites that experience vastly different degrees of mechanical loading, namely biopsies from iliac crest and lumbar spinal lamina. PRINCIPAL FINDINGS: In the lumbar spine, compared to the iliac crest, the majority of the differentially expressed genes showed significantly increased levels of expression; 3406 transcripts were up- whilst 838 were down-regulated. Interestingly, all gene transcripts that have been recently demonstrated to be markers of osteocyte, as well as osteoblast and osteoclast-related genes, were markedly up-regulated in the spine. The transcriptome data is consistent with osteocyte numbers being almost identical at the two anatomical sites, but suggesting a relatively low osteocyte functional activity in the iliac crest. Similarly, osteoblast and osteoclast expression data suggested similar numbers of the cells, but presented with higher activity in the spine than iliac crest. This analysis has also led to the identification of expression of a number of transcripts, previously known and novel, which to our knowledge have never earlier been associated with bone growth and remodelling. CONCLUSIONS AND SIGNIFICANCE: This study provides molecular evidence explaining anatomical and micro-architectural site-related changes in bone cell function, which is predominantly attributable to alteration in cell transcriptional activity. A number of novel signaling molecules in critical pathways, which have been hitherto not known to be expressed in bone cells of mature vertebrates, were identified

    Methicillin-Resistant Staphylococcus aureus Infection and Hospitalization in High-Risk Patients in the Year following Detection

    Get PDF
    Many studies have evaluated methicillin-resistant Staphylococcus aureus (MRSA) infections during single hospitalizations and subsequent readmissions to the same institution. None have assessed the comprehensive burden of MRSA infection in the period after hospital discharge while accounting for healthcare utilization across institutions.We conducted a retrospective cohort study of adult patients insured by Harvard Pilgrim Health Care who were newly-detected to harbor MRSA between January 1991 and December 2003 at a tertiary care medical center. We evaluated all MRSA-attributable infections associated with hospitalization in the year following new detection, regardless of hospital location. Data were collected on comorbidities, healthcare utilization, mortality and MRSA outcomes. Of 591 newly-detected MRSA carriers, 23% were colonized and 77% were infected upon detection. In the year following detection, 196 (33%) patients developed 317 discrete and unrelated MRSA infections. The most common infections were pneumonia (34%), soft tissue (27%), and primary bloodstream (18%) infections. Infections occurred a median of 56 days post-detection. Of all infections, 26% involved bacteremia, and 17% caused MRSA-attributable death. During the admission where MRSA was newly-detected, 14% (82/576) developed subsequent infection. Of those surviving to discharge, 24% (114/482) developed post-discharge infections in the year following detection. Half (99/185, 54%) of post-discharge infections caused readmission, and most (104/185, 55%) occurred over 90 days post-discharge.In high-risk tertiary care patients, newly-detected MRSA carriage confers large risks of infection and substantial attributable mortality in the year following acquisition. Most infections occur post-discharge, and 18% of infections associated with readmission occurred in hospitals other than the one where MRSA was newly-detected. Despite gains in reducing MRSA infections during hospitalization, the risk of MRSA infection among critically and chronically ill carriers persists after discharge and warrants targeted prevention strategies

    Presenting the Uncertainties of Odds Ratios Using Empirical-Bayes Prediction Intervals

    Get PDF
    Quantifying exposure-disease associations is a central issue in epidemiology. Researchers of a study often present an odds ratio (or a logarithm of odds ratio, logOR) estimate together with its confidence interval (CI), for each exposure they examined. Here the authors advocate using the empirical-Bayes-based ‘prediction intervals’ (PIs) to bound the uncertainty of logORs. The PI approach is applicable to a panel of factors believed to be exchangeable (no extra information, other than the data itself, is available to distinguish some logORs from the others). The authors demonstrate its use in a genetic epidemiological study on age-related macular degeneration (AMD). The proposed PIs can enjoy straightforward probabilistic interpretations—a 95% PI has a probability of 0.95 to encompass the true value, and the expected number of true values that are being encompassed is for a total of 95% PIs. The PI approach is theoretically more efficient (producing shorter intervals) than the traditional CI approach. In the AMD data, the average efficiency gain is 51.2%. The PI approach is advocated to present the uncertainties of many logORs in a study, for its straightforward probabilistic interpretations and higher efficiency while maintaining the nominal coverage probability

    Cryptococcus gattii Virulence Composite: Candidate Genes Revealed by Microarray Analysis of High and Less Virulent Vancouver Island Outbreak Strains

    Get PDF
    Human and animal cryptococcosis due to an unusual molecular type of Cryptococcus gattii (VGII) emerged recently on Vancouver Island, Canada. Unlike C. neoformans, C. gattii causes disease mainly in immunocompetent hosts, despite producing a similar suite of virulence determinants. To investigate a potential relationship between the regulation of expression of a virulence gene composite and virulence, we took advantage of two subtypes of VGII (a and b), one highly virulent (R265) and one less virulent (R272), that were identified from the Vancouver outbreak. By expression microarray analysis, 202 genes showed at least a 2-fold difference in expression with 108 being up- and 94 being down-regulated in strain R265 compared with strain R272. Specifically, expression levels of genes encoding putative virulence factors (e.g. LAC1, LAC2, CAS3 and MPK1) and genes encoding proteins involved in cell wall assembly, carbohydrate and lipid metabolism were increased in strain R265, whereas genes involved in the regulation of mitosis and ergosterol biosynthesis were suppressed. In vitro phenotypic studies and transcription analysis confirmed the microarray results. Gene disruption of LAC1 and MPK1 revealed defects in melanin synthesis and cell wall integrity, respectively, where CAS3 was not essential for capsule production. Moreover, MPK1 also controls melanin and capsule production and causes a severe attenuation of the virulence in a murine inhalational model. Overall, this study provides the basis for further genetic studies to characterize the differences in the virulence composite of strains with minor evolutionary divergences in gene expression in the primary pathogen C. gattii, that have led to a major invasive fungal infection outbreak

    The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future.

    Get PDF
    There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here

    Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors

    Get PDF
    Purpose: Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods: Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results: Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion: Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX

    Suppression of Radiation-Induced Salivary Gland Dysfunction by IGF-1

    Get PDF
    Radiation is a primary or secondary therapeutic modality for treatment of head and neck cancer. A common side effect of irradiation to the neck and neck region is xerostomia caused by salivary gland dysfunction. Approximately 40,000 new cases of xerostomia result from radiation treatment in the United States each year. The ensuing salivary gland hypofunction results in significant morbidity and diminishes the effectiveness of anti-cancer therapies as well as the quality of life for these patients. Previous studies in a rat model have shown no correlation between induction of apoptosis in the salivary gland and either the immediate or chronic decrease in salivary function following gamma-radiation treatment.A significant level of apoptosis can be detected in the salivary glands of FVB mice following gamma-radiation treatment of the head and neck and this apoptosis is suppressed in transgenic mice expressing an activated mutant of Akt (myr-Akt1). Importantly, this suppression of apoptosis in myr-Akt1 mice preserves salivary function, as measured by saliva output, three and thirty days after gamma-radiation treatment. In order to translate these studies into a preclinal model we found that intravenous injection of IGF1 stimulated activation of endogenous Akt in the salivary glands in vivo. A single injection of IGF1 prior to exposure to gamma-radiation diminishes salivary acinar cell apoptosis and completely preserves salivary gland function three and thirty days following irradiation.These studies suggest that apoptosis of salivary acinar cells underlies salivary gland hypofunction occurring secondary to radiation of the head and neck region. Targeted delivery of IGF1 to the salivary gland of patients receiving head and neck irradiation may be useful in reducing or eliminating xerostomia and restoring quality of life to these patients

    Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study

    Get PDF
    Cervical cancer is still an important issue of public health since it is the fourth most frequent type of cancer in women worldwide. Much effort has been dedicated to combating this cancer, in particular by the early detection of cervical pre-cancerous lesions. For this purpose, this paper reports the use of mass spectrometry coupled with multivariate analysis as an untargeted lipidomic approach to classifying 76 blood plasma samples into negative for intraepithelial lesion or malignancy (NILM, n = 42) and squamous intraepithelial lesion (SIL, n = 34). The crude lipid extract was directly analyzed with mass spectrometry for untargeted lipidomics, followed by multivariate analysis based on the principal component analysis (PCA) and genetic algorithm (GA) with support vector machines (SVM), linear (LDA) and quadratic (QDA) discriminant analysis. PCA-SVM models outperformed LDA and QDA results, achieving sensitivity and specificity values of 80.0% and 83.3%, respectively. Five types of lipids contributing to the distinction between NILM and SIL classes were identified, including prostaglandins, phospholipids, and sphingolipids for the former condition and Tetranor-PGFM and hydroperoxide lipid for the latter. These findings highlight the potentiality of using mass spectrometry associated with chemometrics to discriminate between healthy women and those suffering from cervical pre-cancerous lesions

    Integrin β3 Crosstalk with VEGFR Accommodating Tyrosine Phosphorylation as a Regulatory Switch

    Get PDF
    Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its binding to non-phosphorylated β3CT, accommodating an α-helical turn in integrin bound conformation. We also show that Y747 phosphorylation of β3 enhances the above interaction. To demonstrate the importance of β3 phosphorylation in endothelial cell functions, we synthesized β3CT-mimicking Y747 phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in β3 integrin knock-out or β3 integrin knock-in cells expressing β3 with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2
    corecore