185 research outputs found
Correction to: The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.
Following publication of the original article [1], the author identified an error in Fig. 4E. The data and statistics were correct, but the synaptophysin blot was incorrect. The incorrect (Fig. 1) and correct figure (Fig. 2) are shown in this correction article. (Figure presented.)
The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease
Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD
Delivery Challenges for Fluoride, Chlorhexidine and Xylitol
The progression or reversal of dental caries is determined by the balance between pathological and protective factors. It is well established that a) fluoride inhibits demineralization and enhances remineralization, b) chlorhexidine reduces the cariogenic bacterial challenge, and c) xylitol is non-cariogenic and has antibacterial properties. The challenge that we face is how best to deliver these anti-caries entities at true therapeutic levels, over time, to favorably tip the caries balance. High caries risk people, including children with Early Childhood Caries (ECC), are a special challenge, since high cariogenic bacterial activity can override fluoride therapy. Current fluoride and chlorhexidine varnishes deliver all their activity within about 24 hours. Early studies with experimental slow release fluoride devices retained elevated levels of fluoride for months in a therapeutic range but have not been pursued. Preventive dentistry has largely ignored the benefits of reducing the bacterial challenge, partially due to primitive and inadequate delivery systems. For example, Chlorhexidine applied as a rinse partially reduces some bacteria but not others that are hiding within the biofilm. Better antibacterials and better delivery systems are needed. Xylitol delivered by gum or lozenge appears to be effective clinically in reducing cariogenic bacteria and caries levels, but novel systems that deliver therapeutic amounts when needed would be a major advance, especially for young children. Reducing the cariogenic bacterial challenge and enhancing the effect of fluoride by the use of new sustained-delivery systems would have a major effect on dealing with caries as a disease
White privilege, empathy and alterity in higher education : Teaching about race and racism in the sociology of PE and sport
In this chapter we provide a reflexive account on personal experiences teaching in HE in order to consider the extent to which our status as white HE practitioners reinforces and/or undermines white privilege in HE. As lecturers teaching within the discipline of sociology in physical education (PE) and sport contexts, we question whether our delivery of lectures on race and racism effectively challenges racialised discourses and encourages social action within our field. Despite the fact that the undergraduate programmes we work on incorporate lectures on race and ethnicity as a crucial part of the curriculum, these sessions have rarely been delivered by black and minority ethnic (BME) academics. We therefore consider whether our practice can provide a critical pedagogic voice, or if it simply provides a platform for white academics to unconsciously reinforce the institutional whiteness of HE. In particular, we reflect upon the possibility for white academics to empathise with the racialised social experiences of BME students in our cohorts, and the potential risk that our practice simply offers tokenistic discussion of race which reinforce the current forms of inequality and white privilege, whilst violating the alterity of our students
Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic
Aims
Despite multiple studies investigating the environmental controls on CH4 fluxes from arctic tundra ecosystems, the high spatial variability of CH4 emissions is not fully understood. This makes the upscaling of CH4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH4 emission from tundra ecosystems.
Methods
CH4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO2 and CH4 gas analyser.
Results
All sites were found to be sources of CH4, with northern sites (in Barrow) showing similar CH4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH4 emission. Greater vascular plant cover was linked with higher CH4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH4 emission in these tundra ecosystems.
Conclusions
Overall, this study provides an increased understanding of the fine scale spatial controls on CH4 flux, in particular the key role that plant cover and GPP play in enhancing CH4 emissions from tundra soils
Prepatterning in the Stem Cell Compartment
The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate between functionally distinct substates that are primed to select distinct lineages when differentiation is induced
Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds
The perception of speech is usually an effortless and reliable process even in highly adverse listening conditions. In addition to external sound sources, the intelligibility of speech can be reduced by degradation of the structure of speech signal itself, for example by digital compression of sound. This kind of distortion may be even more detrimental to speech intelligibility than external distortion, given that the auditory system will not be able to utilize sound source-specific acoustic features, such as spatial location, to separate the distortion from the speech signal. The perceptual consequences of acoustic distortions on speech intelligibility have been extensively studied. However, the cortical mechanisms of speech perception in adverse listening conditions are not well known at present, particularly in situations where the speech signal itself is distorted. The aim of this thesis was to investigate the cortical mechanisms underlying speech perception in conditions where speech is less intelligible due to external distortion or as a result of digital compression.
In the studies of this thesis, the intelligibility of speech was varied either by digital compression or addition of stochastic noise. Cortical activity related to the speech stimuli was measured using magnetoencephalography (MEG). The results indicated that degradation of speech sounds by digital compression enhanced the evoked responses originating from the auditory cortex, whereas addition of stochastic noise did not modulate the cortical responses. Furthermore, it was shown that if the distortion was presented continuously in the background, the transient activity of auditory cortex was delayed. On the perceptual level, digital compression reduced the comprehensibility of speech more than additive stochastic noise. In addition, it was also demonstrated that prior knowledge of speech content enhanced the intelligibility of distorted speech substantially, and this perceptual change was associated with an increase in cortical activity within several regions adjacent to auditory cortex.
In conclusion, the results of this thesis show that the auditory cortex is very sensitive to the acoustic features of the distortion, while at later processing stages, several cortical areas reflect the intelligibility of speech. These findings suggest that the auditory system rapidly adapts to the variability of the auditory environment, and can efficiently utilize previous knowledge of speech content in deciphering acoustically degraded speech signals.Puheen havaitseminen on useimmiten vaivatonta ja luotettavaa myös erittäin huonoissa kuunteluolosuhteissa. Puheen ymmärrettävyys voi kuitenkin heikentyä ympäristön häiriölähteiden lisäksi myös silloin, kun puhesignaalin rakennetta muutetaan esimerkiksi pakkaamalla digitaalista ääntä. Tällainen häiriö voi heikentää ymmärrettävyyttä jopa ulkoisia häiriöitä voimakkaammin, koska kuulojärjestelmä ei pysty hyödyntämään äänilähteen ominaisuuksia, kuten äänen tulosuuntaa, häiriön erottelemisessa puheesta. Akustisten häiriöiden vaikutuksia puheen havaitsemiseen on tutkttu laajalti, mutta havaitsemiseen liittyvät aivomekanismit tunnetaan edelleen melko puutteelisesti etenkin tilanteissa, joissa itse puhesignaali on laadultaan heikentynyt. Tämän väitöskirjan tavoitteena oli tutkia puheen havaitsemisen aivomekanismeja tilanteissa, joissa puhesignaali on vaikeammin ymmärrettävissä joko ulkoisen äänilähteen tai digitaalisen pakkauksen vuoksi.
Väitöskirjan neljässä osatutkimuksessa lyhyiden puheäänien ja jatkuvan puheen ymmärrettävyyttä muokattiin joko digitaalisen pakkauksen kautta tai lisäämällä puhesignaaliin satunnaiskohinaa. Puheärsykkeisiin liittyvää aivotoimintaa tutkittiin magnetoenkefalografia-mittauksilla. Tutkimuksissa havaittiin, että kuuloaivokuorella syntyneet herätevasteet voimistuivat, kun puheääntä pakattiin digitaalisesti. Sen sijaan puheääniin lisätty satunnaiskohina ei vaikuttanut herätevasteisiin. Edelleen, mikäli puheäänien taustalla esitettiin jatkuvaa häiriötä, kuuloaivokuoren aktivoituminen viivästyi häiriön intensiteetin kasvaessa. Kuuntelukokeissa havaittiin, että digitaalinen pakkaus heikentää puheäänien ymmärrettävyyttä voimakkaammin kuin satunnaiskohina. Lisäksi osoitettiin, että aiempi tieto puheen sisällöstä paransi merkittävästi häiriöisen puheen ymmärrettävyyttä, mikä heijastui aivotoimintaan kuuloaivokuoren viereisillä aivoalueilla siten, että ymmärrettävä puhe aiheutti suuremman aktivaation kuin heikosti ymmärrettävä puhe.
Väitöskirjan tulokset osoittavat, että kuuloaivokuori on erittäin herkkä puheäänien akustisille häiriöille, ja myöhemmissä prosessoinnin vaiheissa useat kuuloaivokuoren viereiset aivoalueet heijastavat puheen ymmärrettävyyttä. Tulosten mukaan voi olettaa, että kuulojärjestelmä mukautuu nopeasti ääniympäristön vaihteluihin muun muassa hyödyntämällä aiempaa tietoa puheen sisällöstä tulkitessaan häiriöistä puhesignaalia
Family social environment in childhood and self-rated health in young adulthood
<p>Abstract</p> <p>Background</p> <p>Family social support, as a form of social capital, contributes to social health disparities at different age of life. In a life-course epidemiological perspective, the aims of our study were to examine the association between self-reported family social environment during childhood and self-reported health in young adulthood and to assess the role of family functioning during childhood as a potential mediating factor in explaining the association between family breakup in childhood and self-reported health in young adulthood.</p> <p>Methods</p> <p>We analyzed data from the first wave of the Health, Inequalities and Social Ruptures Survey (SIRS), a longitudinal health and socio-epidemiological survey of a random sample of 3000 households initiated in the Paris metropolitan area in 2005. Sample-weighted logistic regression analyses were performed to determine the association between the quality of family social environment in childhood and self-rated health (overall health, physical health and psychological well-being) in young adults (n = 1006). We used structural equation model to explore the mediating role of the quality of family functioning in childhood in the association between family breakup in childhood and self-rated health in young adulthood.</p> <p>Results</p> <p>The multivariate results support an association between a negative family social environment in childhood and poor self-perceived health in adulthood. The association found between parental separation or divorce in childhood and poor self-perceived health in adulthood was mediated by parent-child relationships and by having witnessed interparental violence during childhood.</p> <p>Conclusion</p> <p>These results argue for interventions that enhance family cohesion, particularly after family disruptions during childhood, to promote health in young adulthood.</p
Analysis of Thyroid Response Element Activity during Retinal Development
Thyroid hormone (TH) signaling components are expressed during retinal development in dynamic spatial and temporal patterns. To probe the competence of retinal cells to mount a transcriptional response to TH, reporters that included thyroid response elements (TREs) were introduced into developing retinal tissue. The TREs were placed upstream of a minimal TATA-box and two reporter genes, green fluorescent protein (GFP) and human placental alkaline phosphatase (PLAP). Six of the seven tested TREs were first tested in vitro where they were shown to drive TH-dependent expression. However, when introduced into the developing retina, the TREs reported in different cell types in both a TH-dependent and TH-independent manner, as well as revealed specific spatial patterns in their expression. The role of the known thyroid receptors (TR), TRα and TRβ, was probed using shRNAs, which were co-electroporated into the retina with the TREs. Some TREs were positively activated by TR+TH in the developing outer nuclear layer (ONL), where photoreceptors reside, as well as in the outer neuroblastic layer (ONBL) where cycling progenitor cells are located. Other TREs were actively repressed by TR+TH in cells of the ONBL. These data demonstrate that non-TRs can activate some TREs in a spatially regulated manner, whereas other TREs respond only to the known TRs, which also read out activity in a spatially regulated manner. The transcriptional response to even simple TREs provides a starting point for understanding the regulation of genes by TH, and highlights the complexity of transcriptional regulation within developing tissue
Stress and subjective well-being among first year UK undergraduate students
Transition to university is stressful and successful adjustment is imperative for well-being. Historically research on transitional stress focussed on negative outcomes and ill health. This is the first UK study applying a positive psychology approach to investigate the characteristics that facilitate adjustment among new university students. A range of psychological strengths conceptualised as covitality factors, shown individually to influence the stress and subjective well-being (SWB) relationship were assessed among 192 first year UK undergraduates in week three of their first semester and again six months later. Path analyses revealed that optimism mediated the relationship between stress and negative affect (a component of SWB) over time, and academic self-efficacy demonstrated significant relationships with life satisfaction and positive affect. Contrary to predictions, stress levels remained stable over time although academic alienation increased and self-efficacy decreased. Optimism emerged as a key factor for new students to adjust to university, helping to buffer the impact of stress on well-being throughout the academic year. Incorporating stress management and psycho-educational interventions to develop strengths is discussed as a way of promoting confidence and agency in new students to help them cope better with the stress at university
- …