61 research outputs found
Spike pattern recognition by supervised classification in low dimensional embedding space
© The Author(s) 2016. This article is published with open access at Springerlink.com under the terms of the Creative Commons Attribution License 4.0, (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Epileptiform discharges in interictal electroencephalography (EEG) form the mainstay of epilepsy diagnosis and localization of seizure onset. Visual analysis is rater-dependent and time consuming, especially for long-term recordings, while computerized methods can provide efficiency in reviewing long EEG recordings. This paper presents a machine learning approach for automated detection of epileptiform discharges (spikes). The proposed method first detects spike patterns by calculating similarity to a coarse shape model of a spike waveform and then refines the results by identifying subtle differences between actual spikes and false detections. Pattern classification is performed using support vector machines in a low dimensional space on which the original waveforms are embedded by locality preserving projections. The automatic detection results are compared to expertsâ manual annotations (101 spikes) on a whole-night sleep EEG recording. The high sensitivity (97 %) and the low false positive rate (0.1 minâ1), calculated by intra-patient cross-validation, highlight the potential of the method for automated interictal EEG assessment.Peer reviewedFinal Published versio
Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification
Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam's feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species.
Changes in ocean temperature and pH will impact on species, as well as impacting on community interactions. Here warming and acidification cause a clam species to change their feeding mode, with cascading effects for the marine sedimentary food web
Muscle Fiber Viability, a Novel Method for the Fast Detection of Ischemic Muscle Injury in Rats
Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group, and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in clinical settings in the diagnostics of acute ischemic muscle injury
Dystroglycan versatility in cell adhesion: a tale of multiple motifs
Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular a-subunit makes connections
with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular
matrix and the transmembrane b-subunit makes connections to the actin filament network via cytoskeletal linkers
including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin
glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold
in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a
multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic
domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus
of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a
nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C
terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners
for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a
range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional
scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatiotemporal
regulation
- âŠ