3,269 research outputs found

    Demonstration of negative group delays in a simple electronic circuit

    Full text link
    We present a simple electronic circuit which produces negative group delays for base-band pulses. When a band-limited pulse is applied as the input, a forwarded pulse appears at the output. The negative group delays in lumped systems share the same mechanism with the superluminal light propagation, which is recently demonstrated in an absorption-free, anomalous dispersive medium [Wang et al., Nature 406, 277 (2000)]. In this circuit, the advance time more than twenty percent of the pulse width can easily be achieved. The time constants, which can be in the order of seconds, is slow enough to be observed with the naked eye by looking at the lamps driven by the pulses.Comment: 6pages,8 figure

    Generation of photon pairs using polarization-dependent two-photon absorption

    Get PDF
    We propose a new method for generating photon pairs from coherent light using polarization-dependent two-photon absorption. We study the photon statistics of two orthogonally polarized modes by solving a master equation, and show that when we prepare a coherent state in one polarization mode, photon pairs are created in the other mode. The photon pairs have the same frequency as that of the incident light.Comment: 4 pages, 3 figures, submitted to PR

    Simulation of Slow Light with Electronics Circuits

    Full text link
    We present an electronic circuit which simulates wave propagation in dispersive media. The circuit is an array of phase shifter composed of operational amplifiers and can be described with a discretized version of one-dimensional wave equation for envelopes. The group velocity can be changed both spatially and temporarily. It is used to emulate slow light or stopped light, which has been realized in a medium with electromagnetically induced transparency (EIT). The group-velocity control of optical pulses is expected to be a useful tool in the field of quantum information and communication.Comment: The following article has been submitted to the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp (7 pages, 7 figures

    Absorption-free optical control of spin systems:the quantum Zeno effect in optical pumping

    Get PDF
    We show that atomic spin motion can be controlled by circularly polarized light without light absorption in the strong pumping limit. In this limit, the pumping light, which drives the empty spin state, destroys the Zeeman coherence effectively and freezes the coherent transition via the quantum Zeno effect. It is verified experimentally that the amount of light absorption decreases asymptotically to zero as the incident light intensity is increased.Comment: 4 pages with 4 figure

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.

    Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: Experiment and theory

    Get PDF
    We have experimentally realized Brewster's effect for transverse-electric waves with metamaterials. In dielectric media, Brewster's no-reflection effect arises only for transverse-magnetic waves. However, it has been theoretically predicted that Brewster's effect arises for TE waves under the condition that the relative permeability r is not equal to unity. We have designed an array of split-ring resonators as a metamaterial with mu_r 1 using a finite-difference time-domain method. The reflection measurements were carried out in a 3-GHz region and the disappearance of reflected waves at a particular incident angle was confirmed.Comment: 4 pages, 5 figure

    Helical mode conversion using conical reflector

    Get PDF
    In a recent paper, Mansuripur et al. [Phys. Rev. A 84, 033813 (2011)] indicated and numerically verified the generation of the helical wavefront of optical beams using a conical-shape reflector. Because the optical reflection is largely free from chromatic aberrations, the conical reflector has an advantage of being able to manipulate the helical wavefront with broadband light such as white light or short light pulses. In this study, we introduce geometrical understanding of the function of the conical reflector using the spatially-dependent geometric phase, or more specifically, the spin redirection phase. We also present a theoretical analysis based on three-dimensional matrix calculus and elucidate relationships of the spin, orbital, and total angular momenta between input and output beams. These analyses are very useful when designing other optical devices that utilize spatially-dependent spin redirection phases. Moreover, we experimentally demonstrate the generation of helical beams from an ordinary Gaussian beam using a metallic conical-shape reflector.Comment: 7 pages, 7 figure

    Spectral-Function Sum Rules in Supersymmetry Breaking Models

    Full text link
    The technique of Weinberg's spectral-function sum rule is a powerful tool for a study of models in which global symmetry is dynamically broken. It enables us to convert information on the short-distance behavior of a theory to relations among physical quantities which appear in the low-energy picture of the theory. We apply such technique to general supersymmetry breaking models to derive new sum rules.Comment: 18 pages, 1 figur

    Scaling theory of transport in complex networks

    Full text link
    Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We demonstrate the networks invariance under length scale renormalization and we show that the problem of transport can be characterized in terms of a set of critical exponents. The scaling theory allows us to determine the influence of the modular structure on transport. We also generalize our theory by presenting and verifying scaling arguments for the dependence of transport on microscopic features, such as the degree of the nodes and the distance between them. Using transport concepts such as diffusion and resistance we exploit this invariance and we are able to explain, based on the topology of the network, recent experimental results on the broad flow distribution in metabolic networks.Comment: 8 pages, 6 figure

    Search for Lepton Flavor-Violating "tau -> mu gamma" decay

    Full text link
    We search for the lepton flavor-violating "tau -> mu gamma" decay using 29.7 million tau pairs accumulated by the Belle experiment. The main background sources are found to be tau pairs with "tau -> mu nu nu" decay and radiative dimuon events. One event is observed in the signal region, while 2.5 +- 0.6 background events are expected. A preliminary upper limit Br(tau -> mu gamma) < 6 x 10^{-7} at the 90% confidence limit is obtained.Comment: Invited talk at the Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, Ca, USA, Sept 2002, 6 pages, LaTeX, 13 eps figure
    corecore