3,805 research outputs found
On reversion phenomena in Cu-Zr-Cr alloys
Reversion phenomena in aged Cu-0.12% Zr-0.28% Cr alloy were investigated by means of resistivity measurement and transmission electron microscopy and compared with those of Cu-0.30% Zr and Cu-0.26% Cr alloys. Specimens in the form of a 0.5 mm sheet were solution-treated at 950 F for 1 hr water-quenched, aged, and finally reversed. The reversion phenomena were confirmed to exist in Cu-Zr and Cu-Zr-Cr alloys as well as Cu-Cr alloys, at aging temperatures of 300 to 500 F. The critical aging temperature for the reversion was not observed in all the alloys. Split aging increased the amount of reversion, particularly in Cu-Zr and Cu-Zr-Cr alloys, compared with that by conventional aging. The amount of reversion in Cu-Zr-Cr alloy was greatly affected by the resolution of Cr precipitate formed by preaging. Structural changes in Cu-Zr-Cr alloy due to the reversion were hardly observed by transmission electron microscopy
Nonlinear behavior of geometric phases induced by photon pairs
In this study, we observe the nonlinear behavior of the two-photon geometric
phase for polarization states using time-correlated photons pairs. This phase
manifests as a shift of two-photon interference fringes. Under certain
arrangements, the geometric phase can vary nonlinearly and become very
sensitive to a change in the polarization state. Moreover, it is known that the
geometric phase for identically polarized photons is times larger than
that for one photon. Thus, the geometric phase for two photons can become two
times more sensitive to a state change. This high sensitivity to a change in
the polarization can be exploited for precision measurement of small
polarization variation. We evaluate the signal-to-noise ratio of the
measurement scheme using the nonlinear behavior of the geometric phase under
technical noise and highlight the practical advantages of this scheme.Comment: 10 pages, 10 figure
Dynamic fluctuations in the superconductivity of NbN films from microwave conductivity measurements
We have measured the frequency and temperature dependences of complex ac
conductivity, \sigma(\omega)=\sigma_1(\omega)-i\sigma_2(\omega), of NbN films
in zero magnetic field between 0.1 to 10 GHz using a microwave broadband
technique. In the vicinity of superconducting critical temperature, Tc, both
\sigma_1(\omega) and \sigma_2(\omega) showed a rapid increase in the low
frequency limit owing to the fluctuation effect of superconductivity. For the
films thinner than 300 nm, frequency and temperature dependences of fluctuation
conductivity, \sigma(\omega,T), were successfully scaled onto one scaling
function, which was consistent with the Aslamazov and Larkin model for two
dimensional (2D) cases. For thicker films, \sigma(\omega,T) data could not be
scaled, but indicated that the dimensional crossover from three dimensions (3D)
to 2D occurred as the temperature approached Tc from above. This provides a
good reference of ac fluctuation conductivity for more exotic superconductors
of current interest.Comment: 8 pages, 7 Figures, 1 Table, Accepted for publication in PR
Helical mode conversion using conical reflector
In a recent paper, Mansuripur et al. [Phys. Rev. A 84, 033813 (2011)]
indicated and numerically verified the generation of the helical wavefront of
optical beams using a conical-shape reflector. Because the optical reflection
is largely free from chromatic aberrations, the conical reflector has an
advantage of being able to manipulate the helical wavefront with broadband
light such as white light or short light pulses. In this study, we introduce
geometrical understanding of the function of the conical reflector using the
spatially-dependent geometric phase, or more specifically, the spin redirection
phase. We also present a theoretical analysis based on three-dimensional matrix
calculus and elucidate relationships of the spin, orbital, and total angular
momenta between input and output beams. These analyses are very useful when
designing other optical devices that utilize spatially-dependent spin
redirection phases. Moreover, we experimentally demonstrate the generation of
helical beams from an ordinary Gaussian beam using a metallic conical-shape
reflector.Comment: 7 pages, 7 figure
Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system
We study a hole-doped two-leg ladder system including metal ions, oxygen, and
electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}.
Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of
pressure by applying an unrestricted Hartree-Fock approximation to a multiband
Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase
transition between single-polaron and bi-polaron states. The electronic and
phononic excitations in those states, including distinctive local lattice
vibrational modes, are calculated by means of a direct-space Random Phase
approximation. Finally, as a function of pressure, we identify a transition
between site- and bond-centered bi-polarons, accompanied by a soft mode and a
low-energy charge-sliding mode. We suggest comparisons with available
experimented data
Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures
We investigated macroscopic quantum tunneling (MQT) of
BiSrCaCuO intrinsic Josephson junctions (IJJs) with two device
structures. One is a nanometer-thick small mesa structure with only two or
three IJJs and the other is a stack of a few hundreds of IJJs on a narrow
bridge structure. Experimental results of switching current distribution for
the first switching events from zero-voltage state showed a good agreement with
the conventional theory for a single Josephson junction, indicating that a
crossover temperature from thermal activation to MQT regime for the former
device structure was as high as that for the latter device structure. Together
with the observation of multiphoton transitions between quantized energy levels
in MQT regime, these results strongly suggest that the observed MQT behavior is
intrinsic to a single IJJ in high- cuprates, independent of device
structures. The switching current distribution for the second switching events
from the first resistive state, which were carefully distinguished from the
first switchings, was also compared between two device structures. In spite of
the difference in the heat transfer environment, the second switching events
for both devices were found to show a similar temperature-independent behavior
up to a much higher temperature than the crossover temperature for the first
switching. We argue that it cannot be explained in terms of the self-heating
owing to dissipative currents after the first switching. As possible
candidates, the MQT process for the second switching and the effective increase
of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.
Geometry of One-Dimensional Wave Propagation
We investigate the geometrical features of one-dimensional wave propagation,
whose dynamics is described by the (2+1)-dimensional Lorentz group. We find
many interesting geometrical ingredients such as spinorlike behavior of wave
amplitudes, gauge transformations, Bloch-type equations, and Lorentz-group
Berry phases. We also propose an optical experiment to verify these effects.Comment: RevTeX, 16 pages, 6 postscript figure
Scaling theory of transport in complex networks
Transport is an important function in many network systems and understanding
its behavior on biological, social, and technological networks is crucial for a
wide range of applications. However, it is a property that is not
well-understood in these systems and this is probably due to the lack of a
general theoretical framework. Here, based on the finding that renormalization
can be applied to bio-networks, we develop a scaling theory of transport in
self-similar networks. We demonstrate the networks invariance under length
scale renormalization and we show that the problem of transport can be
characterized in terms of a set of critical exponents. The scaling theory
allows us to determine the influence of the modular structure on transport. We
also generalize our theory by presenting and verifying scaling arguments for
the dependence of transport on microscopic features, such as the degree of the
nodes and the distance between them. Using transport concepts such as diffusion
and resistance we exploit this invariance and we are able to explain, based on
the topology of the network, recent experimental results on the broad flow
distribution in metabolic networks.Comment: 8 pages, 6 figure
- …