138 research outputs found

    Hot Atom Chemistry of ^<76>As Using Benzenearsonic Acid as a Target

    Get PDF
    The enrichment of ^As by means of the hot atom effect of neutron capture reaction has been carried out by using benzenearsonic acid as a target. Arsenites were carefully removed in advance from benzenearsonic acid. After irradiating for 2 hours in the pneumatic tube of atomic pile JRR-1 (thermal neutron flux is about 10^n/cm^2・sec.), benzenearsonic acid was dissolved in 12 ml of 11 N hydrochloric acid. Resulting solution was then shaken with 10 ml of benzene and the recoiled arsenic was extracted into benzene layer. This layer was stripped with water, and ^As was obtained in aqueous solution. The present enrichment method is advantageous in that radiochemically and chemically pure ^As is obtained by comparatively simple and rapid procedures in a single oxidation state of trivalency in diluted hydrochloric acid solution . And it was found that the retention value of recoil fragments was about 15~20% and about 80% of it was present in trivalent state

    A Food Impaction in Crohn’s Ileal Stricture

    Get PDF

    Impairment of cerebellar long‑term depression and GABAergic transmission in prion protein deficient mice ectopically expressing PrPLP/Dpl

    Get PDF
    Prion protein (PrPC) knockout mice, named as the “Ngsk” strain (Ngsk Prnp0/0 mice), show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Our previous study indicated that the mutant mice also exhibited alterations in cerebellum-dependent delay eyeblink conditioning, even at a young age (16 weeks of age) when neurological changes had not occurred. Thus, this electrophysiological study was designed to examine the synaptic function of the cerebellar cortex in juvenile Ngsk Prnp0/0 mice. We showed that Ngsk Prnp0/0 mice exhibited normal paired-pulse facilitation but impaired long-term depression of excitatory synaptic transmission at synapses between parallel fibres and PCs. GABAA-mediated inhibitory postsynaptic currents recorded from PCs were also weakened in Ngsk Prnp0/0 mice. Furthermore, we confirmed that Ngsk Prnp0/0 mice (7–8-week-old) exhibited abnormalities in delay eyeblink conditioning. Our findings suggest that these alterations in both excitatory and inhibitory synaptic transmission to PCs caused deficits in delay eyeblink conditioning of Ngsk Prnp0/0 mice. Therefore, the Ngsk Prnp0/0 mouse model can contribute to study underlying mechanisms for impairments of synaptic transmission and neural plasticity, and cognitive deficits in the central nervous system

    Early Contextual Fear Memory Deficits in a Double-Transgenic Amyloid- β

    Get PDF
    Presenilin 1 and presenilin 2 (PS1 and PS2) play a critical role in γ-secretase-mediated cleavage of amyloid-β precursor protein (APP) and the subsequent generation of β-amyloid peptides. The purpose of the present study was to test whether PS2 mutation accelerates the onset of contextual fear memory deficits in a mouse model of AD that expresses a mutation (K670N/M671L) of the human APP with the Swedish mutation (Tg2576 mice). In the present study, an APP/PS2 double-transgenic mouse model (PS2Tg2576) was generated by crossbreeding transgenic mice carrying the human mutant PS2 (N141I) with Tg2576 mice. Contextual fear conditioning was tested in PS2Tg2576 mice aged 3, 4, 6, and 10–12 months. PS2Tg2576 mice showed a tendency of lower freezing behavior as early as 3 months of age, but significant memory impairment was observed from the age of 4 months. The cognitive impairment was more prominent at ages of 6 and 10–12 months. In contrast, Tg2576 mice aged 3 and 4 months exhibited successful acquisition of contextual fear learning, but Tg2576 mice aged 6 months or older showed significantly impaired fear memory. These results show that PS2 mutation significantly accelerates the onset of fear memory deficits in the APP AD model mice

    Anti-IL-6 Receptor Antibody Causes Less Promotion of Tuberculosis Infection than Anti-TNF-α Antibody in Mice

    Get PDF
    Objective. Our aim was to investigate the effects of IL-6 blockade on the progression of Mycobacterium tuberculosis (TB) and compare them with those of TNF-α blockade in mice. Methods. Mice were intravenously infected with TB and injected with antibodies. Survival was monitored and histological and immunological studies were carried out. Results. All anti-IL-6R Ab-treated mice and 8 of 10 control mice survived until sacrificed 224 days after TB challenge, whereas anti-TNF-α Ab-treated mice all died between 120 and 181 days. Anti-IL-6R Ab-treated mice exhibited no significant differences in TB CFU in organs, including the lungs, and no deterioration in histopathology compared to control mice at 4 weeks. In contrast, anti-TNF-α Ab-treated mice exhibited increased TB CFU and greater progression of histopathological findings in organs than control mice. Spleen cells from anti-TNF-α Ab-treated mice had decreased antigen-specific response in IFN-γ release and proliferation assays. The results in anti-IL-6R Ab-treated mice suggest that spleen cell responses were decreased to a lesser degree. Similar results were obtained in IL-6 knockout (KO) mice, compared with TNF receptor 1 (TNFR1) KO and TNFR1/IL-6 double KO (DKO) mice. Conclusion. IL-6R blockade promotes the progression of TB infection in mice far less than TNF-α blockade

    Inflammatory Mediator TAK1 Regulates Hair Follicle Morphogenesis and Anagen Induction Shown by Using Keratinocyte-Specific TAK1-Deficient Mice

    Get PDF
    Transforming growth factor-β-activated kinase 1 (TAK1) is a member of the NF-κB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial–mesenchymal interactions. To examine this possibility, we studied the role of TAK1 in mouse hair follicle development and cycling as an instructive model system. By comparing keratinocyte-specific TAK1-deficient mice (Map3k7fl/flK5-Cre) with control mice, we found that the number of hair germs (hair follicles precursors) in Map3k7fl/flK5-Cre mice was significantly reduced at E15.5, and that subsequent hair follicle morphogenesis was retarded. Next, we analyzed the role of TAK1 in the cyclic remodeling in follicles by analyzing hair cycle progression in mice with a tamoxifen-inducible keratinocyte-specific TAK1 deficiency (Map3k7fl/flK14-Cre-ERT2). After active hair growth (anagen) was induced by depilation, TAK1 was deleted by topical tamoxifen application. This resulted in significantly retarded anagen development in TAK1-deficient mice. Deletion of TAK1 in hair follicles that were already in anagen induced premature, apoptosis-driven hair follicle regression, along with hair follicle damage. These studies provide the first evidence that the inflammatory mediator TAK1 regulates hair follicle induction and morphogenesis, and is required for anagen induction and anagen maintenance

    Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes

    Get PDF
    Background: Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. Results: To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. Conclusions: Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.ArticleBMC GENOMICS. 14:248 (2013)journal articl

    PoGOLite - A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter

    Full text link
    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a 40-100mCrab source between 25 and 50keV. A 6 hour observation on the Crab will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. The first flight is planned for 2010 and long-duration flights from Sweden to Northern Canada are foreseen thereafter.Comment: 11 pages, 11 figures, 2 table

    Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells.

    Get PDF
    Activation of the type-1 metabotropic glutamate receptor (mGluR1) signaling pathway in the cerebellum involves activation of phospholipase C (PLC) and protein kinase C (PKC) for the induction of cerebellar long term depression (LTD). The PLC and PKC isoforms that are involved in LTD remain unclear, however. One previous study found no change in LTD in PKCgamma-deficient mice, thus, in the present study, we examined cerebellar LTD in PLCbeta4-deficient mice. Immunohistochemical and Western blot analyses of cerebellum from wild-type mice revealed that PLCbeta1 was expressed weakly and uniformly, PLCbeta2 was not detected, PLCbeta3 was expressed predominantly in caudal cerebellum (lobes 7-10), and PLCbeta4 was expressed uniformly throughout. In PLCbeta4-deficient mice, expression of total PLCbeta, the mGluR1-mediated Ca(2+) response, and LTD induction were greatly reduced in rostral cerebellum (lobes 1-6). Furthermore, we used immunohistochemistry to localize PKCalpha, -betaI, -betaII, and -gamma in mouse cerebellar Purkinje cells during LTD induction. Both PKCalpha and PKCbetaI were found to be translocated to the plasmamembrane under these conditions. Taken together, these results suggest that mGluR1-mediated activation of PLCbeta4 in rostral cerebellar Purkinje cells induced LTD via PKCalpha and/or PKCbetaI

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024
    corecore