82 research outputs found
Nondispersive solutions to the L2-critical half-wave equation
We consider the focusing -critical half-wave equation in one space
dimension where denotes the
first-order fractional derivative. Standard arguments show that there is a
critical threshold such that all solutions with extend globally in time, while solutions with may develop singularities in finite time.
In this paper, we first prove the existence of a family of traveling waves
with subcritical arbitrarily small mass. We then give a second example of
nondispersive dynamics and show the existence of finite-time blowup solutions
with minimal mass . More precisely, we construct a
family of minimal mass blowup solutions that are parametrized by the energy
and the linear momentum . In particular, our main result
(and its proof) can be seen as a model scenario of minimal mass blowup for
-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page
Coherently Scattering Atoms from an Excited Bose-Einstein Condensate
We consider scattering atoms from a fully Bose-Einstein condensed gas. If we
take these atoms to be identical to those in the Bose-Einstein condensate, this
scattering process is to a large extent analogous to Andreev reflection from
the interface between a superconducting and a normal metal. We determine the
scattering wave function both in the absence and the presence of a vortex. Our
results show a qualitative difference between these two cases that can be
understood as due to an Aharonov-Bohm effect. It leads to the possibility to
experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure
Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model
We discuss the localization behavior of localized electronic wave functions
in the one- and two-dimensional tight-binding Anderson model with diagonal
disorder. We find that the distributions of the local wave function amplitudes
at fixed distances from the localization center are well approximated by
log-normal fits which become exact at large distances. These fits are
consistent with the standard single parameter scaling theory for the Anderson
model in 1d, but they suggest that a second parameter is required to describe
the scaling behavior of the amplitude fluctuations in 2d. From the log-normal
distributions we calculate analytically the decay of the mean wave functions.
For short distances from the localization center we find stretched exponential
localization ("sublocalization") in both, 1d and 2d. In 1d, for large
distances, the mean wave functions depend on the number of configurations N
used in the averaging procedure and decay faster that exponentially
("superlocalization") converging to simple exponential behavior only in the
asymptotic limit. In 2d, in contrast, the localization length increases
logarithmically with the distance from the localization center and
sublocalization occurs also in the second regime. The N-dependence of the mean
wave functions is weak. The analytical result agrees remarkably well with the
numerical calculations.Comment: 12 pages with 9 figures and 1 tabl
Random subcubes as a toy model for constraint satisfaction problems
We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces
the structure of the solution space of the random k-satisfiability and
k-coloring problems, and undergoes the same phase transitions as these
problems. The comparison becomes quantitative in the large-k limit. Distance
properties, as well the x-satisfiability threshold, are studied. The model is
also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.Comment: 21 pages, 4 figure
- …