16 research outputs found
Radium inputs into the Arctic Ocean from rivers: a basin-wide estimate
Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are 7.0 â 9.4 x 1014 dpm y-1 and 15-18 x 1014 dpm y-1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of 7.4 â 17 x 1015 and 15 â 27 x 1015 dpm y-1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone
The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data
We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define ηâ as the HZ occurrence of planets with radii between 0.5 and 1.5 Râ orbiting stars with effective temperatures between 4800 and 6300 K. We find that ηâ for the conservative HZ is between 0.37^(+0.48)_(â0.21) (errors reflect 68% credible intervals) and 0.60^(+0.90)_(â0.36) planets per star, while the optimistic HZ occurrence is between 0.58^(+0.73)_(â0.33) and 0.88^(+1.28)_(â0.51) planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ~6 pc away and there are ~4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun
The Occurrence of Rocky Habitable Zone Planets Around Solar-Like Stars from Kepler Data
We present occurrence rates for rocky planets in the habitable zones (HZ) of
main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and
Gaia-based stellar properties. We provide the first analysis in terms of
star-dependent instellation flux, which allows us to track HZ planets. We
define as the HZ occurrence of planets with radius between 0.5
and 1.5 orbiting stars with effective temperatures between 4800 K
and 6300 K. We find that for the conservative HZ is between
(errors reflect 68\% credible intervals) and
planets per star, while the optimistic HZ occurrence is
between and planets per star.
These bounds reflect two extreme assumptions about the extrapolation of
completeness beyond orbital periods where DR25 completeness data are available.
The large uncertainties are due to the small number of detected small HZ
planets. We find similar occurrence rates using both a Poisson likelihood
Bayesian analysis and Approximate Bayesian Computation. Our results are
corrected for catalog completeness and reliability. Both completeness and the
planet occurrence rate are dependent on stellar effective temperature. We also
present occurrence rates for various stellar populations and planet size
ranges. We estimate with confidence that, on average, the nearest HZ
planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky
planets around G and K dwarfs within 10 pc of the Sun.Comment: To appear in The Astronomical Journa
Recommended from our members
Radioisotope constraints of Arctic deep water export to the North Atlantic
The export of deep water from the Arctic to the Atlantic contributes to the formation of North Atlantic Deep Water, a crucial component of global ocean circulation. Records of protactinium-231 (231Pa) and thorium-230 (230Th) in Arctic sediments can provide a measure of this export, but well-constrained sedimentary budgets of these isotopes have been difficult to achieve in the Arctic Ocean. Previous studies revealed a deficit of 231Pa in central Arctic sediments, implying that some 231Pa is either transported to the margins, where it may be removed in areas of higher particle flux, or exported from the Arctic via deep water advection. Here we investigate this âmissing sinkâ of Arctic 231Pa and find moderately increased 231Pa deposition along Arctic margins. Nonetheless, we determine that most 231Pa missing from the central basin must be lost via advection into the Nordic Seas, requiring deep water advection of 1.1 â 6.4âSv through Fram Strait
Radioisotope constraints of Arctic deep water export to the North Atlantic
North Atlantic deep water (NADW) formation influences the climate and carbon cycle, but the contribution of Arctic waters is difficult to constrain. Here the authors use Pa/Th proxy measurements to determine the amount of Arctic Ocean water that flows through the Fram Strait and contributes to NADW
Radium inputs into the Arctic Ocean from rivers a basinâwide estimate
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basinâwide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0â9.4] Ă 1014 dpm yâ1 and [15â18] Ă 1014 dpm yâ1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4â17] Ă 1015 and [15â27] Ă 1015 dpm yâ1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982)
Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th
Hydrothermal activity in the deep ocean generates plumes capable of removing trace elements from seawater by adsorption and subsequent sinking of particles. This removal process, known as scavenging, can be probed using the insoluble radiogenic isotopes of thorium (Th), which are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. We present dissolved and particulate measurements of these three isotopes in a hydrothermal plume observed during the GEOTRACES GP16 section in the southeast Pacific Ocean. Since their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th), the combination of their signals can be used to understand scavenging processes occurring on a wide range of timescales. Scavenging is a multi-step process involving adsorption and desorption onto particles, followed by particle aggregation, sinking, and eventual sedimentation. We use thorium isotopes to study how hydrothermal activity affects these steps. The rate constants for net adsorption of 234Th determined here are comparable to previous estimates from hydrothermal plumes in the Atlantic and North Pacific Oceans. The partitioning of 234Th and 230Th between large and small particles is more similar in the hydrothermal plume than above it, indicating faster aggregation of particles within the hydrothermal plume at stations nearby the East Pacific Rise than in waters outside the plume. In addition to rapid scavenging and aggregation near the ridge axis, we also infer continuous off-axis scavenging from observations and modeling of 228Th/228Ra activity ratios. The degree of depletion of the three thorium isotopes increases in order of half-life, with total 234Th activity close to that of its parent 238U, but 230Th showing nearly 70% depletion compared to expected values from reversible scavenging. By modeling the variations in depletion for the different isotopes, we show that much of the 230Th removal is inherited from scavenging events happening long before the most recent hydrothermal inputs.JRC.G.2-Standards for Nuclear Safety, Security and Safeguard
Starlikeness of Libera transformation (II) (Applications of Complex Function Theory to Differential Equations)
The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-Ï data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. GonzĂĄlez