66 research outputs found
Population divergence in nutrient-temperature interactions in Pieris rapae
The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larval Pieris rapae (Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations of P. rapae within North America vary in their sensitivity to nutritional balance and temperature
Scientists' warning on climate change and insects
Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insectsâcentral components of many ecosystemsâfor which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
Evolutionary genetics of dorsal wing colour in Colias butterflies.
The evolution of butterfly wing colouration is strongly affected by its multiple functions and by the correlated evolution of wing colour elements. Both factors may prevent local adaptation to ecological conditions. We investigated one aspect of wing colouration, the degree of dorsal wing melanization, in the butterfly Colias philodice eriphyle across an elevational gradient and its correlation with another aspect of wing colouration, ventral wing melanization. Dorsal wing melanization increased with elevation and these differences persisted in a common environment. Full-sibling analysis revealed high heritability for males but only intermediate heritability for females. The correlation between ventral and dorsal melanization showed significant elevational and sex-specific differences. In males the two traits were highly correlated, whereas in females the strength of the correlation decreased with increasing elevation. We conclude that uncoupling of ventral and dorsal melanization has evolved in females but not in males and discuss possible mechanisms underlying uncoupling
Transgenerational plasticity mediates temperature effects on fitness in the water flea Daphnia magna
- âŠ