178 research outputs found

    The role of current loop in harmonic generation from magnetic metamaterials in two polarizations

    Full text link
    In this paper, we investigate the role of the current loop in the generation of second and third harmonic signals from magnetic metamaterials. We will show that the fact that the current loop in the magnetic resonance acts as a source for nonlinear effects and it consists of two orthogonal parts, leads to the generation of two harmonic signals in two orthogonal polarizations

    Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay

    Get PDF
    Nanofabrication techniques are essential for exploring nanoscience and many closely related research fields such as materials, electronics, optics and photonics. Recently, three-dimensional (3D) nanofabrication techniques have been actively investigated through many different ways, however, it is still challenging to make elaborate and complex 3D nanostructures that many researchers want to realize for further interesting physics studies and device applications. Electron beam lithography, one of the two-dimensional (2D) nanofabrication techniques, is also feasible to realize elaborate 3D nanostructures by stacking each 2D nanostructures. However, alignment errors among the individual 2D nanostructures have been difficult to control due to some practical issues. In this work, we introduce a straightforward approach to drastically increase the overlay accuracy of sub-20 nm based on carefully designed alignmarks and calibrators. Three different types of 3D nanostructures whose designs are motivated from metamaterials and plasmonic structures have been demonstrated to verify the feasibility of the method, and the desired result has been achieved. We believe our work can provide a useful approach for building more advanced and complex 3D nanostructures.114sciescopu

    Thermally robust ring-shaped chromium perfect absorber of visible light

    Get PDF
    A number of light-absorbing devices based on plasmonic materials have been reported, and their device efficiencies (or absorption) are high enough to be used in real-life applications. Many light-absorbing applications such as thermophotovoltaics and energy-harvesting and energy-sensing devices usually require high-temperature durability; unfortunately, noble metals used for plasmonics are vulnerable to heat. As an alternative, refractory plasmonics has been introduced using refractory metals such as tungsten (3422 degrees C) and transition metal nitrides such as titanium nitride (2930 degrees C). However, some of these materials are not easy to handle for device fabrications owing to their ultra-high melting point. Here, we propose a light absorber based on chromium (Cr), which is heat tolerant due to its high melting temperature (1907 degrees C) and is compatible with fabrication using conventional semiconductor manufacturing processes. The fabricated device has >95% average absorption of visible light (500-800 nm) independent of polarization states. To verify its tolerance of heat, the absorber was also characterized after annealing at 600 degrees C. Because of its compactness, broadband operational wavelength, and heat tolerance, this Cr perfect absorber will have applications in high-temperature photonic devices such as solar thermophotovoltaics.111Ysciescopu
    corecore