1 research outputs found

    Sensors and Methods for Railway Signalling Equipment Monitoring

    Get PDF
    Signalling upgrade projects that have been installed in equipment rooms in the recent past have limited capability to monitor performance of certain types of external circuits. To modify the equipment rooms on the commissioned railway would prove very expensive to implement and would be unacceptable in terms of delays caused to passenger services due to re-commissioning circuits after modification, to comply with rail signalling standards. The use of magnetoresistive sensors to provide performance data on point circuit operation and point operation is investigated. The sensors are bench tested on their ability to measure current in a circuit in a non-intrusive manner. The effect of shielding on the sensor performance is tested and found to be significant. The response of the sensors with various levels of amplification produces linear responses across a range of circuit gain. The output of the sensor circuit is demonstrated for various periods of interruption of conductor current. A three-axis accelerometer is mounted on a linear actuator to demonstrate the type of output expected from similar sensors mounted on a set of points. Measurements of current in point detection circuits and acceleration forces resulting from vibration of out of tolerance mechanical assemblies can provide valuable information on performance and possible threats to safe operation of equipment. The sensors seem capable of measuring the current in a conductor with a comparatively high degree of sensitivity. There is development work required on shielding the sensor from magnetic fields other than those being measured. The accelerometer work is at a demonstration level and requires development. The future testing work with accelerometers should be at a facility where multiple point moves can be made; with the capability to introduce faults to the point mechanisms. Methods can then be developed for analysis of the vibration signatures produced by the various faults
    corecore