3,270 research outputs found
Final-state read-out of exciton qubits by observing resonantly excited photoluminescence in quantum dots
We report on a new approach to detect excitonic qubits in semiconductor
quantum dots by observing spontaneous emissions from the relevant qubit level.
The ground state of excitons is resonantly excited by picosecond optical
pulses. Emissions from the same state are temporally resolved with picosecond
time resolution. To capture weak emissions, we greatly suppress the elastic
scattering of excitation beams, by applying obliquely incident geometry to the
micro photoluminescence set-up. Rabi oscillations of the ground-state excitons
appear to be involved in the dependence of emission intensity on excitation
amplitude.Comment: 4 pages, 4 figures, to appear in Appl. Phys. Let
Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method
The mechanism of the Coulomb breakup reactions of the nuclei with
neutron-halo structure is investigated in detail. A time-dependent
Schr\"odinger equation for the halo neutron is numerically solved by treating
the Coulomb field of a target as an external field. The momentum distribution
and the post-acceleration effect of the final fragments are discussed in a
fully quantum mechanical way to clarify the limitation of the intuitive picture
based on the classical mechanics. The theory is applied to the Coulomb breakup
reaction of Be + Pb. The breakup mechanism is found to be
different between the channels of and
, reflecting the underlying structure of Be. The
calculated result reproduces the energy spectrum of the breakup fragments
reasonably well, but explains only about a half of the observed longitudinal
momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request
Multipole Expansion for Relativistic Coulomb Excitation
We derive a general expression for the multipole expansion of the
electro-magnetic interaction in relativistic heavy-ion collisions, which can be
employed in higher-order dynamical calculations of Coulomb excitation. The
interaction has diagonal as well as off-diagonal multipole components,
associated with the intrinsic and relative coordinates of projectile and
target. A simple truncation in the off-diagonal components gives excellent
results in first-order perturbation theory for distant collisions and for beam
energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.
- …