1,811 research outputs found

    A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications

    Get PDF
    A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (similar to 300 mu m thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.open1112Ysciescopu

    Observation of chiral quantum-Hall edge states in graphene

    Full text link
    In this study, we determined the chiral direction of the quantum-Hall (QH) edge states in graphene by adopting simple two-terminal conductance measurements while grounding different edge positions of the sample. The edge state with a smaller filling factor is found to more strongly interact with the electric contacts. This simple method can be conveniently used to investigate the chirality of the QH edge state with zero filling factor in graphene, which is important to understand the symmetry breaking sequence in high magnetic fields (\gtrsim25 T).Comment: 3 pages, 3 figures. Appeared in AP

    Expression Analysis of Rice Defense-Related Genes in Turfgrass in Response to \u3ci\u3eMagnaporthe grisea\u3c/i\u3e

    Get PDF
    Magnaporthe grisea (anamorph = Pyricularia grisea) causes blast on rice (Oryza sativa) and gray leaf spot on turfgrass. Gray leaf spot is a serious disease on St. Augustinegrass (Stenotaphrum secundatum), perennial ryegrass (Lolium perenne), and tall fescue (Festuca arundinacea). Virulence assays performed in this study revealed that M. grisea collected from rice could also cause disease on St. Augustinegrass and tall fescue. One rice isolate, Che86061, caused similar disease reactions on susceptible cultivars of rice and St. Augustinegrass and an incompatible interaction on resistant cultivars of both species. To explore whether similar defense-related genes are expressed in rice and St. Augustinegrass, a rice cDNA library was screened using pooled cDNAs derived from M. grisea infected St. Augustinegrass. Thirty rice EST (expressed sequence tag) clones showing differential expression in St. Augustinegrass following M. grisea inoculation were identified and classified into six putative functional groups. Northern blot analyses of seven EST clones that collectively represented each putative functional group confirmed that the expression of five out of seven EST clones was similar in both rice and St. Augustinegrass. This study represents one of the first attempts to use a broad-scale genomic approach and resources of a model monocot system to study defense gene expression in St. Augustinegrass following M. grisea infection

    Flavour Chemistry of Chicken Meat: A Review

    Get PDF
    Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable “warmed over flavour” in chicken meat products are supposed to be the lack of α-tocopherol in chicken meat

    Irradiation of Shell Egg on the Physicochemical and Functional Properties of Liquid Egg White

    Get PDF
    The effect of irradiation of shell eggs on the physiochemical and functional properties, and color and textural parameters of liquid egg white during storage were determined. Shell eggs were irradiated at 0, 2.5, 5, or 10 kGy using a linear accelerator. Viscosity, pH, turbidity, foaming properties, color, and volatile profile of liquid egg white, and color and texture properties of cooked egg white were determined at 0, 7, and 14 days of storage. Irradiation increased the turbidity but decreased viscosity of liquid egg white. Foaming capacity and foam stability were not affected by irradiation at lower dose (2.5 kGy), but were deteriorated at higher doses (≥ 5.0 kGy) of irradiation. Sulfur-containing volatiles were generated by irradiation and their amounts increased as the irradiation dose increased. However, the sulfur volatiles disappeared during storage under aerobic conditions. Lightness (L* value) and yellowness (b* value) decreased, but greenness (-a * value) increased in cooked egg white in irradiation dose-dependent manners. All textural parameters (hardness, adhesiveness, cohesiveness, chewiness, and resilience) of cooked egg white increased as the irradiation dose increased, but those changes were marginal. Our results indicated that irradiation of shell egg at lower doses (up to 2.5 kGy) had little negative impact on the physiochemical and functional properties of liquid egg white, but can improve the efficiency of egg processing due to its viscosity-lowering effect. Therefore, irradiation of shell eggs at the lower doses has high potential to be used by egg processing industry to improve the safety of liquid egg without compensating its quality
    corecore