6,737 research outputs found

    Black hole binary inspiral and trajectory dominance

    Full text link
    Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a ``kick'' that can eject it from the nucleus of a galaxy. In a previous paper we showed that the puzzling partial cancellation of an early kick by a late antikick, and the dependence of the cancellation on black hole spin, can be understood from the phenomenology of the linear momentum waveforms. Here we connect that phenomenology to its underlying cause, the spin-dependence of the inspiral trajectories. This insight suggests that the details of plunge can be understood more broadly with a focus on inspiral trajectories.Comment: 15 pages, 12 figure

    Systematics of black hole binary inspiral kicks and the slowness approximation

    Get PDF
    During the inspiral and merger of black holes, the interaction of gravitational wave multipoles carries linear momentum away, thereby providing an astrophysically important recoil, or "kick" to the system and to the final black hole remnant. It has been found that linear momentum during the last stage (quasinormal ringing) of the collapse tends to provide an "antikick" that in some cases cancels almost all the kick from the earlier (quasicircular inspiral) emission. We show here that this cancellation is not due to peculiarities of gravitational waves, black holes, or interacting multipoles, but simply to the fact that the rotating flux of momentum changes its intensity slowly. We show furthermore that an understanding of the systematics of the emission allows good estimates of the net kick for numerical simulations started at fairly late times, and is useful for understanding qualitatively what kinds of systems provide large and small net kicks.Comment: 15 pages, 6 figures, 2 table

    Landau Ginzburg Theory and Nuclear Matter at Finite Temperature

    Full text link
    Based on recent studies of the temperature dependence of the energy and specific heat of liquid nuclear matter, a phase transition is suggested at a temperature ∼.8\sim .8 MeV. We apply Landau Ginzburg theory to this transition and determine the behaviour of the energy and specific heat close to the critical temperature in the condensed phase.Comment: 10 pages, Revte

    Massive scalar field instability in Kerr spacetime

    Full text link
    We study the Klein-Gordon equation for a massive scalar field in Kerr spacetime in the time-domain. We demonstrate that under conditions of super-radiance, the scalar field becomes unstable and its amplitude grows without bound. We also estimate the growth rate of this instability.Comment: 10 pages, 5 figure

    Absence of pre-classical solutions in Bianchi I loop quantum cosmology

    Full text link
    Loop quantum cosmology, the symmetry reduction of quantum geometry for the study of various cosmological situations, leads to a difference equation for its quantum evolution equation. To ensure that solutions of this equation act in the expected classical manner far from singularities, additional restrictions are imposed on the solution. In this paper, we consider the Bianchi I model, both the vacuum case and the addition of a cosmological constant, and show using generating function techniques that only the zero solution satisfies these constraints. This implies either that there are technical difficulties with the current method of quantizing the evolution equation, or else loop quantum gravity imposes strong restrictions on the physically allowed solutions.Comment: 4 pages, no figures, version to appear in PR
    • …
    corecore