12 research outputs found

    PHARMACEUTICAL AND BIOPHARMACEUTICAL ASPECTS OF QUANTUM DOTS-AN OVERVIEW

    Get PDF
    In the twenty-first century, nanotechnology has become cutting-edge technology. It is interdisciplinary and multidisciplinary, covering numerous fields such as medicine, engineering, biology, physics, material sciences, and chemistry. The present work aims to cover the optical properties, method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots (QDs). Articles were reviewed in English literature reporting the pharmaceutical and bio-pharmaceutical aspects of QDs which were indexed in Scopus, web of science, google scholar and PubMed without applying the year of publication criterion. One significant value of utilizing nanotechnology is that one can alter and control the properties in a genuinely unsurprising way to address explicit applications' issues. In science and biomedicine, the usage of functional nanomaterials has been broadly investigated and has become one of the quick-moving and stimulating research directions. Different types of nanomaterial (silicon nanowires, QDs, carbon nanotubes, nanoparticles of gold/silver) were extensively utilized for biological purposes. Nanomedicine shows numerous advantages in the natural characteristics of targeted drug delivery and therapeutics. For instance, protection of drugs against degradation, improvement in the drug's stability, prolonged circulation time, deceased side effects, and enhanced distribution in tissues. The present review article deals with the quantum dots, their optical properties, method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots. The review also discusses various biomedical applications of QDs. The QDs-based bio-nanotechnology will always be in the growing list of unique applications, with progress being made in specialized nanoparticle development, the detection of elegant conjugation methods, and the discovery of new targeting ligands

    Carotenoids: Role in Neurodegenerative Diseases Remediation

    Get PDF
    Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as “CTs”, are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs

    Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents

    No full text
    Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity

    TRANSDERMAL PATCHES FOR THE TREATMENT OF ANGINA PECTORIS: AN EFFECTIVE DRUG DELIVERY SYSTEM-A REVIEW

    Get PDF
    Topical delivery methods have been used since the dawn of time, employed to cure a wide range of ailments and for aesthetic purposes. Transdermal drug delivery has evolved throughout time, with the development of passive and active technologies that have resulted in enhanced distribution, accuracy in drug dosage, and better fulfilment of the requirements of the individual. The search for more powerful pharmaceuticals that can be delivered to the skin through appropriate transdermal technologies will continue to be a focus in the development of drugs for transdermal patches and other forms of delivery. Topical and transdermal distribution has been around for a while, but this review will focus on transdermal patches and how they've evolved. The articles have been searched on different search engines such as Scopus database, Science direct, PubMed, Google scholar, and Bentham science using multiple keywords. An adhesive transdermal patch is applied to the skin and contains medicine that is absorbed into the bloodstream through the skin. It aids in the recovery of an afflicted part of the body. When compared to oral, topical, i. v., and i. m. administration systems, transdermal drug delivery allows a controlled release of the medicine into patients, often by either a porous membrane or by body heat melting small layers of medication embedded in the adhesive. The fundamental drawback of transdermal delivery methods is that the skin is a highly efficient barrier, therefore, only tiny molecules can enter the skin and be administered in this manner

    Genus <i>Amorphophallus</i>: A Comprehensive Overview on Phytochemistry, Ethnomedicinal Uses, and Pharmacological Activities

    No full text
    The genus Amorphophallus belongs to the family Araceae. Plants belonging to this genus are available worldwide and have been used in traditional medicines since ancient times, mainly in Ayurveda and Unani medical practices. Amorphophallus species are an abundant source of polyphenolic compounds; these are accountable for their pharmacological properties, such as their analgesic, neuroprotective, hepatoprotective, anti-inflammatory, anticonvulsant, antibacterial, antioxidant, anticancer, antiobesity, and immunomodulatory effects, as well as their ability to prevent gastrointestinal disturbance and reduce blood glucose. Moreover, Amorphophallus species contain numerous other classes of chemical compounds, such as alkaloids, steroids, fats and fixed oils, tannins, proteins, and carbohydrates, each of which contributes to the pharmacological effects for the treatment of acute rheumatism, tumors, lung swelling, asthma, vomiting, abdominal pain, and so on. Additionally, Amorphophallus species have been employed in numerous herbal formulations and pharmaceutical applications. There has been no extensive review conducted on the Amorphophallus genus as of yet, despite the fact that several experimental studies are being published regularly discussing these plants’ pharmacological properties. So, this review discusses in detail the pharmacological properties of Amorphophallus species. We also discuss phytochemical constituents in the Amorphophallus species and their ethnomedicinal uses and toxicological profiles

    An Overview of Diabetic Foot Ulcers and Associated Problems with Special Emphasis on Treatments with Antimicrobials

    No full text
    One of the most significant challenges of diabetes health care is diabetic foot ulcers (DFU). DFUs are more challenging to cure, and this is particularly true for people who already have a compromised immune system. Pathogenic bacteria and fungi are becoming more resistant to antibiotics, so they may be unable to fight microbial infections at the wound site with the antibiotics we have now. This article discusses the dressings, topical antibacterial treatment, medications and debridement techniques used for DFU and provides a deep discussion of DFU and its associated problems. English-language publications on DFU were gathered from many different databases, such as Scopus, Web of Science, Science Direct, Springer Nature, and Google Scholar. For the treatment of DFU, a multidisciplinary approach involving the use of diagnostic equipment, skills, and experience is required. Preventing amputations starts with patient education and the implementation of new categorization systems. The microbiota involved in DFU can be better understood using novel diagnostic techniques, such as the 16S-ribosomal DNA sequence in bacteria. This could be achieved by using new biological and molecular treatments that have been shown to help prevent infections, to control local inflammation, and to improve the healing process

    Potential Epha2 Receptor Blockers Involved in Cerebral Malaria from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis and Ocimum basilicum: A Computational Approach

    No full text
    Cerebral malaria (CM) is a severe manifestation of parasite infection caused by Plasmodium species. In 2018, there were approximately 228 million malaria cases worldwide, resulting in about 405,000 deaths. Survivors of CM may live with lifelong post-CM consequences apart from an increased risk of childhood neurodisability. EphA2 receptors have been linked to several neurological disorders and have a vital role in the CM-associated breakdown of the blood&ndash;brain barrier. Molecular docking (MD) studies of phytochemicals from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis, Ocimum basilicum, and the native ligand ephrin-A were conducted to identify the potential blockers of the EphA2 receptor. The software program Autodock Vina 1.1.2 in PyRx-Virtual Screening Tool and BIOVIA Discovery Studio visualizer was used for this MD study. The present work showed that blocking the EphA2 receptor by these phytochemicals prevents endothelial cell apoptosis by averting ephrin-A ligand-expressing CD8+ T cell bioadhesion. These phytochemicals showed excellent docking scores and binding affinity, demonstrating hydrogen bond, electrostatic, Pi-sigma, and pi alkyl hydrophobic binding interactions when compared with native ligands at the EphA2 receptor. The comparative MD study using two PDB IDs showed that isocolumbin, carnosol, luteolin, and taraxasterol have better binding affinities (viz. &minus;9.3, &minus;9.0, &minus;9.5, and &minus;9.2 kcal/mol, respectively). Ocimum basilicum phytochemicals showed a lower docking score but more binding interactions than native ligands at the EphA2 receptor for both PDB IDs. This suggests that these phytochemicals may serve as potential drug candidates in the management of CM. We consider that the present MD study provides leads in drug development by targeting the EphA2 receptor in managing CM. The approach is innovative because a role for EphA2 receptors in CM has never been highlighted

    Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed?

    No full text
    Abstract The primary approaches to treat cancerous diseases include drug treatment, surgical procedures, biotherapy, and radiation therapy. Chemotherapy has been the primary treatment for cancer for a long time, but its main drawback is that it kills cancerous cells along with healthy ones, leading to deadly adverse health effects. However, genitourinary cancer has become a concern in recent years as it is more common in middle-aged people. So, researchers are trying to find possible therapeutic options from natural small molecules due to the many drawbacks associated with chemotherapy and other radiation-based therapies. Plenty of research was conducted regarding genitourinary cancer to determine the promising role of natural small molecules. So, this review focused on natural small molecules along with their potential therapeutic targets in the case of genitourinary cancers such as prostate cancer, renal cancer, bladder cancer, testicular cancer, and so on. Also, this review states some ongoing or completed clinical evidence in this regard

    Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors

    Get PDF
    The present work describes the design and development of seventeen pyrimidine-clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors. These compounds were filtered by using ADMET, drug-likeness characteristics calculations, and molecular docking experiments. Compounds 27, 29, 30, 33, 37, 38, and 41 were chosen for the synthesis based on the results of the in silico screening. Each of the synthesized compounds was tested for its in vitro antibacterial and antifungal activities using a variety of strains. All the compounds showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus pyogenes) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Most of the compounds either had a higher potency than chloramphenicol or an equivalent potency to ciprofloxacin. Compounds 29 and 33 were effective against all the bacterial and fungal strains. Finally, the 1,2,3,4-tetrahydropyrimidine-2-thiol derivatives with a 6-chloro-2-(chloromethyl)-1H-benzo[d]imidazole moiety are potent enough to be considered a promising lead for the discovery of an effective antibacterial agent

    Coumarin-Based Sulfonamide Derivatives as Potential DPP-IV Inhibitors: Pre-ADME Analysis, Toxicity Profile, Computational Analysis, and In Vitro Enzyme Assay

    No full text
    Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 ”M in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 ”M IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay
    corecore