19 research outputs found
The ETS Family Member TEL Binds to Nuclear Receptors RAR and RXR and Represses Gene Activation
Retinoic acid receptor (RAR) signaling is important for regulating transcriptional activity of genes involved in growth, differentiation, metabolism and reproduction. Defects in RAR signaling have been implicated in cancer. TEL, a member of the ETS family of transcription factors, is a DNA-binding transcriptional repressor. Here, we identify TEL as a transcriptional repressor of RAR signaling by its direct binding to both RAR and its dimerisation partner, the retinoid x receptor (RXR) in a ligand-independent fashion. TEL is found in two isoforms, created by the use of an alternative startcodon at amino acid 43. Although both isoforms bind to RAR and RXR in vitro and in vivo, the shorter form of TEL represses RAR signaling much more efficiently. Binding studies revealed that TEL binds closely to the DNA binding domain of RAR and that both Helix Loop Helix (HLH) and DNA binding domains of TEL are mandatory for interaction. We have shown that repression by TEL does not involve recruitment of histone deacetylases and suggest that polycomb group proteins participate in the process
Individualized versus standard FSH dosing in women starting IVF/ICSI:an RCT, Part 1: The predicted poor responder
\u3cp\u3eSTUDY QUESTION: Does an increased FSH dose result in higher cumulative live birth rates in women with a predicted poor ovarian response, apparent from a low antral follicle count (AFC), scheduled for IVF or ICSI? SUMMARY ANSWER: In women with a predicted poor ovarian response (AFC < 11) undergoing IVF/ICSI, an increased FSH dose (225/ 450 IU/day) does not improve cumulative live birth rates as compared to a standard dose (150 IU/day). WHAT IS KNOWN ALREADY: In women scheduled for IVF/ICSI, an ovarian reserve test (ORT) can predict ovarian response to stimulation. The FSH starting dose is often adjusted based on the ORT from the belief that it will improve live birth rates. However, the existing RCTs on this topic, most of which show no benefit, are underpowered. STUDY DESIGN, SIZE, DURATION: Between May 2011 and May 2014, we performed an open-label multicentre RCT in women with an AFC < 11 (Dutch Trial Register NTR2657). The primary outcome was ongoing pregnancy achieved within 18 months after randomization and resulting in a live birth. We needed 300 women to assess whether an increased dose strategy would increase the cumulative live birth rate from 25 to 40% (two-sided alpha-error 0.05, power 80%). PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with an AFC ≤ 7 were randomized to an FSH dose of 450 IU/day or 150 IU/day, and women with an AFC 8–10 were randomized to 225 IU or 150 IU/day. In the standard group, dose adjustment was allowed in subsequent cycles based on pre-specified criteria. Both effectiveness and cost-effectiveness of the strategies were evaluated from an intention-to-treat perspective. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 511 women were randomized, 234 with an AFC ≤ 7 and 277 with an AFC 8–10. The cumulative live birth rate for increased versus standard dosing was 42.4% (106/250) versus 44.8% (117/261), respectively [relative risk (RR): 0.95 (95%CI, 0.78–1.15), P = 0.58]. As an increased dose strategy was more expensive [delta costs/woman: €1099 (95%CI, 562–1591)], standard FSH dosing was the dominant strategy in our economic analysis. LIMITATIONS, REASONS FOR CAUTION: Despite our training programme, the AFC might have suffered from inter-observer variation. As this open study permitted small dose adjustments between cycles, potential selective cancelling of cycles in women treated with 150 IU could have influenced the cumulative results. However, since first cycle live birth rates point in the same direction we consider it unlikely that the open design masked a potential benefit for the individualized strategy. WIDER IMPLICATIONS OF THE FINDINGS: Since an increased dose in women scheduled for IVF/ICSI with a predicted poor response (AFC < 11) does not improve live birth rates and is more expensive, we recommend using a standard dose of 150 IU/day in these women. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by The Netherlands Organisation for Health Research and Development (ZonMW number 171102020). T.C.T., H.L.T. and S.C.O. received an unrestricted personal grant from Merck BV. H.R.V. receives monetary compensation as a member on an external advisory board for Ferring pharmaceutical BV. B.W.J.M. is supported by a NHMRC Practitioner Fellowship (GNT1082548) and reports consultancy for OvsEva, Merck and Guerbet. F.J.M.B. receives monetary compensation as a member of the external advisory board for Ferring pharmaceutics BV (the Netherlands) and Merck Serono (the Netherlands) for consultancy work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development (Switzerland) and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare.\u3c/p\u3
Signal sequence directs localized secretion of bacterial surface proteins.
All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals(1). In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms(2,3). Here we analyse localized secretion in the Gram-positive pathogen Streptococcus pyogenes, and show that the signal sequences of two surface proteins, M protein and protein F ( PrtF), direct secretion to different subcellular regions. The signal sequence of M protein promotes secretion at the division septum, whereas that of PrtF preferentially promotes secretion at the old pole. Our work therefore shows that a signal sequence may contain information that directs the secretion of a protein to one subcellular region, in addition to its classical role in promoting secretion. This finding identifies a new level of complexity in protein translocation and emphasizes the potential of bacterial systems for the analysis of fundamental cell-biological problems(4)
Type VII secretion-mycobacteria show the way.
Recent evidence shows that mycobacteria have developed novel and specialized secretion systems for the transport of extracellular proteins across their hydrophobic, and highly impermeable, cell wall. Strikingly, mycobacterial genomes encode up to five of these transport systems. Two of these systems, ESX-1 and ESX-5, are involved in virulence - they both affect the cell-to-cell migration of pathogenic mycobacteria. Here, we discuss this novel secretion pathway and consider variants that are present in various Gram-positive bacteria. Given the unique composition of this secretion system, and its general importance, we propose that, in line with the accepted nomenclature, it should be called type VII secretion