115 research outputs found

    ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3*

    Get PDF
    We present the analysis of the hot-Jupiter KELT-7 b using transmission and emission spectroscopy from the Hubble Space Telescope, both taken with the Wide Field Camera 3. Our study uncovers a rich transmission spectrum that is consistent with a cloud-free atmosphere and suggests the presence of H_{2}O and H^{−}. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature–pressure profile, collision induced absorption, and H^{-}. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additional data sets. Further observations with Hubble, or the next generation of space-based telescopes, are needed to allow for the optical opacity source in transmission to be confirmed and for molecular features to be disentangled in emission

    Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes

    Get PDF
    BACKGROUND: The rhizomes of Panax japonicus are used as a folk medicine for treatment of life-style related diseases such as arteriosclerosis, hyperlipidemia, hypertension and non-insulin-dependent diabetes mellitus as a substitute for ginseng roots in China and Japan. Obesity is closely associated with life-style-related diseases. This study was performed to clarify whether chikusetsusaponins prevent obesity induced in mice by a high-fat diet for 9 weeks. METHODS: We performed two in vivo experiments. In one, female ICR mice were fed a high-fat diet with or without 1 or 3% chikusetsusaponins isolated from P. japonicus rhizomes for 9 weeks. In the other, lipid emulsion with or without chikusetsusaponins was administered orally to male Wistar rats, and then the plasma triacylglycerol level was measured 0.5 to 5 h after the orally administered lipid emulsion. For in vitro experiments, the inhibitory effects of total chikusetsusaponins and various purified chikusetsusaponins on pancreatic lipase activity were determined by measuring the rate of release of oleic acid from triolein in an assay system using triolein emulsified with lecithin. RESULTS: Total chikusetsusaponins prevented the increases in body weight and parametrial adipose tissue weight induced by a high-fat diet. Furthermore, consumption of a high-fat diet containing 1 or 3% total chikusetsusaponins significantly increased the fecal content and triacylglycerol level at day 3 compared with the high-fat diet groups. Total chikusetsusaponins inhibited the elevation of the plasma triacylglycerol level 2 h after the oral administration of the lipid emulsion. Total chikusetsusaponins, chikusetsusaponin III, 28-deglucosyl-chikusetsusaponin IV and 28-deglucosyl-chikusetsusaponin V inhibited the pancreatic lipase activity. CONCLUSION: The anti-obesity effects of chikusetsusaponins isolated from P. japonicus rhizomes in mice fed a high-fat diet may be partly mediated through delaying the intestinal absorption of dietary fat by inhibiting pancreatic lipase activity. The present study clearly indicated that the saponin fractions of P. japonicus rhizomes had a significant anti-obesity action and supports the traditional usage as a substitute drug for ginseng roots

    The association of spinal osteoarthritis with lumbar lordosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Careful review of published evidence has led to the postulate that the degree of lumbar lordosis may possibly influence the development and progression of spinal osteoarthritis, just as misalignment does in other joints. Spinal degeneration can ensue from the asymmetrical distribution of loads. The resultant lesions lead to a domino- like breakdown of the normal morphology, degenerative instability and deviation from the correct configuration. The aim of this study is to investigate whether a relationship exists between the sagittal alignment of the lumbar spine, as it is expressed by lordosis, and the presence of radiographic osteoarthritis.</p> <p>Methods</p> <p>112 female subjects, aged 40-72 years, were examined in the Outpatients Department of the Orthopedics' Clinic, University Hospital of Heraklion, Crete. Lumbar radiographs were examined on two separate occasions, independently, by two of the authors for the presence of osteoarthritis. Lordosis was measured from the top of L<sub>1 </sub>to the bottom of L<sub>5 </sub>as well as from the top of L<sub>1 </sub>to the top of S<sub>1</sub>. Furthermore, the angle between the bottom of L<sub>5 </sub>to the top of S<sub>1</sub>was also measured.</p> <p>Results and discussion</p> <p>49 women were diagnosed with radiographic osteoarthritis of the lumbar spine, while 63 women had no evidence of osteoarthritis and served as controls. The two groups were matched for age and body build, as it is expressed by BMI. No statistically significant differences were found in the lordotic angles between the two groups</p> <p>Conclusions</p> <p>There is no difference in lordosis between those affected with lumbar spine osteoarthritis and those who are disease free. It appears that osteoarthritis is not associated with the degree of lumbar lordosis.</p

    Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization.

    Get PDF
    The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made

    Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

    Get PDF
    Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis

    Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Get PDF
    BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of \u3b3-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Phytoplankton responses to marine climate change – an introduction

    Get PDF
    Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary production. They serve as the basis for marine food webs, drive chemical composition of the global atmosphere and thereby climate. Seasonal environmental changes and nutrient availability naturally influence phytoplankton species composition. Since the industrial era, anthropogenic climatic influences have increased noticeably – also within the ocean. Our changing climate, however, affects the composition of phytoplankton species composition on a long-term basis and requires the organisms to adapt to this changing environment, influencing micronutrient bioavailability and other biogeochemical parameters. At the same time, phytoplankton themselves can influence the climate with their responses to environmental changes. Due to its key role, phytoplankton has been of interest in marine sciences for quite some time and there are several methodical approaches implemented in oceanographic sciences. There are ongoing attempts to improve predictions and to close gaps in the understanding of this sensitive ecological system and its responses

    Tutorial: Multivariate Classification for Vibrational Spectroscopy in Biological Samples

    Get PDF
    Vibrational spectroscopy techniques, such as Fourier-transform infrared (FTIR) and Raman spectroscopy, have been successful methods for studying the interaction of light with biological materials and facilitating novel cell biology analysis. Spectrochemical analysis is very attractive in disease screening and diagnosis, microbiological studies and forensic and environmental investigations because of its low cost, minimal sample preparation, non-destructive nature and substantially accurate results. However, there is now an urgent need for multivariate classification protocols allowing one to analyze biologically derived spectrochemical data to obtain accurate and reliable results. Multivariate classification comprises discriminant analysis and class-modeling techniques where multiple spectral variables are analyzed in conjunction to distinguish and assign unknown samples to pre-defined groups. The requirement for such protocols is demonstrated by the fact that applications of deep-learning algorithms of complex datasets are being increasingly recognized as critical for extracting important information and visualizing it in a readily interpretable form. Hereby, we have provided a tutorial for multivariate classification analysis of vibrational spectroscopy data (FTIR, Raman and near-IR) highlighting a series of critical steps, such as preprocessing, data selection, feature extraction, classification and model validation. This is an essential aspect toward the construction of a practical spectrochemical analysis model for biological analysis in real-world applications, where fast, accurate and reliable classification models are fundamental
    • …
    corecore