221 research outputs found
The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio
Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils
Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l−1 against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites
Combining Substrate Specificity Analysis with Support Vector Classifiers Reveals Feruloyl Esterase as a Phylogenetically Informative Protein Group
Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities. In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (∼86% correct classification), Order (∼88% correct classification) and Family (∼88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs. The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.published_or_final_versio
Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at “Evolution Canyon”, Mount Carmel, Israel
BACKGROUND:Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s) that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC) in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS) receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES), 200 meters apart. Thus, solar ultraviolet radiation (UVR) is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS:We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin; in contrast, the sunny strains from the ES displayed higher melanin concentrations. CONCLUSIONS/SIGNIFICANCE:We conclude that melanin in A. niger is an adaptive trait against UVR generated by natural selection
Growth and Asymmetry of Soil Microfungal Colonies from “Evolution Canyon,” Lower Nahal Oren, Mount Carmel, Israel
Fluctuating asymmetry is a contentious indicator of stress in populations of animals and plants. Nevertheless, it is a measure of developmental noise, typically obtained by measuring asymmetry across an individual organism's left-right axis of symmetry. These individual, signed asymmetries are symmetrically distributed around a mean of zero. Fluctuating asymmetry, however, has rarely been studied in microorganisms, and never in fungi.We examined colony growth and random phenotypic variation of five soil microfungal species isolated from the opposing slopes of “Evolution Canyon,” Mount Carmel, Israel. This canyon provides an opportunity to study diverse taxa inhabiting a single microsite, under different kinds and intensities of abiotic and biotic stress. The south-facing “African” slope of “Evolution Canyon” is xeric, warm, and tropical. It is only 200 m, on average, from the north-facing “European” slope, which is mesic, cool, and temperate. Five fungal species inhabiting both the south-facing “African” slope, and the north-facing “European” slope of the canyon were grown under controlled laboratory conditions, where we measured the fluctuating radial asymmetry and sizes of their colonies. from the “African” slope were more asymmetric than those from the “European” slope.Our study suggests that fluctuating radial asymmetry has potential as an indicator of random phenotypic variation and stress in soil microfungi. Interaction of slope and species for both growth rate and asymmetry of microfungi in a common environment is evidence of genetic differences between the “African” and “European” slopes of “Evolution Canyon.
Soil bacterial and fungal communities across a pH gradient in an arable soil
Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth. The ISME Journal (2010) 4, 1340-1351; doi: 10.1038/ismej.2010.58; published online 6 May 2010 
Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium
- …