9 research outputs found

    Towards a matrix mechanics framework for dynamic protein network

    Get PDF
    Protein–protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces

    No full text
    corecore