99 research outputs found

    Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?

    Get PDF
    Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth

    A double-blind, randomized controlled trial to compare the effect of biannual peripheral magnetic resonance imaging, radiography and standard of care disease progression monitoring on pharmacotherapeutic escalation in rheumatoid and undifferentiated inflammatory arthritis: study protocol for a randomized controlled trial

    Get PDF

    Polycystic ovary syndrome

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic

    Absence of toughening behavior in 0.94(Na<inf>1/2</inf>Bi<inf>1/2</inf>)TiO<inf>3</inf>-0.06BaTiO<inf>3</inf> relaxor ceramic

    No full text
    The fracture behavior of the unpoled 0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3 relaxor ferroelectric was investigated. Previous studies indicated that a metastable ferroelectric long-range order can be induced by mechanical stresses, which could lead to a crack tip process zone and increasing crack resistance during crack growth. Crack propagation in compact tension samples yielded a constant crack resistance as function of crack length. This is consistent with ex situ x-ray diffraction experiments, where a remanent induced process zone on the fracture surface could not be detected. We suggest the very high transformation stress, determined via macroscopic stress-strain measurements, is responsible for the absence of toughening

    Mechanical double loop behavior in BaTiO<inf>3</inf>: Stress induced paraelastic to ferroelastic phase transformation

    No full text
    The structural origin of the mechanical double loop behavior of polycrystalline BaTiO3 at temperatures just above the Curie point has been investigated using in situ high-energy synchrotron x-ray diffraction during uniaxial compressive mechanical loading. The results show a stress-induced transition from the high temperature paraelastic cubic phase to a ferroelastic tetragonal phase with a domain texture close to the saturated state. The nature of the observed stress-induced phase transition was influenced by the proximity of the temperature to the Curie point. With increasing temperature above the Curie point, the transition stress increased while the rate of the transition decreased. © 2013 AIP Publishing LLC
    • 

    corecore