149 research outputs found

    Effects on incident reporting after educating residents in patient safety: a controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical residents are key figures in delivering health care and an important target group for patient safety education. Reporting incidents is an important patient safety domain, as awareness of vulnerabilities could be a starting point for improvements. This study examined effects of patient safety education for residents on knowledge, skills, attitudes, intentions and behavior concerning incident reporting.</p> <p>Methods</p> <p>A controlled study with follow-up measurements was conducted. In 2007 and 2008 two patient safety courses for residents were organized. Residents from a comparable hospital acted as external controls. Data were collected in three ways: 1] questionnaires distributed before, immediately after and three months after the course, 2] incident reporting cards filled out by course participants during the course, and 3] residents' reporting data gathered from hospital incident reporting systems.</p> <p>Results</p> <p>Forty-four residents attended the course and 32 were external controls. Positive changes in knowledge, skills and attitudes were found after the course. Residents' intentions to report incidents were positive at all measurements. Participants filled out 165 incident reporting cards, demonstrating the skills to notice incidents. Residents who had reported incidents before, reported more incidents after the course. However, the number of residents reporting incidents did not increase. An increase in reported incidents was registered by the reporting system of the intervention hospital.</p> <p>Conclusions</p> <p>Patient safety education can have immediate and long-term positive effects on knowledge, skills and attitudes, and modestly influence the reporting behavior of residents.</p

    Do specialty registrars change their attitudes, intentions and behaviour towards reporting incidents following a patient safety course?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reporting incidents can contribute to safer health care, as an awareness of the weaknesses of a system could be considered as a starting point for improvements. It is believed that patient safety education for specialty registrars could improve their attitudes, intentions and behaviour towards incident reporting. The objective of this study was to examine the effect of a two-day patient safety course on the attitudes, intentions and behaviour concerning the voluntary reporting of incidents by specialty registrars.</p> <p>Methods</p> <p>A patient safety course was designed to increase specialty registrars' knowledge, attitudes and skills in order to recognize and cope with unintended events and unsafe situations at an early stage. Data were collected through an 11-item questionnaire before, immediately after and six months after the course was given.</p> <p>Results</p> <p>The response rate at all three points in time assessed was 100% (n = 33). There were significant changes in incident reporting attitudes and intentions immediately after the course, as well as during follow-up. However, no significant changes were found in incident reporting behaviour.</p> <p>Conclusions</p> <p>It is shown that patient safety education can have long-term positive effects on attitudes towards reporting incidents and the intentions of registrars. However, further efforts need to be undertaken to induce a real change in behaviour.</p

    Old lineage on an old island : Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity

    Get PDF
    Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named 'maquis minier', unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of 'maquis minier', in order to better understand the origin and past dynamics of New Caledonian biota

    Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry

    Get PDF
    The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype
    corecore