12 research outputs found

    Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia can findings from animal models be translated to humans?

    Get PDF
    Background: Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion: A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary: More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future

    Harmful Algal Blooms

    No full text
    Harmful algal blooms (HABs) pose threats to the environment, public health, and a variety of commercial interests and industries. A single bloom can lead to devastating outcomes, including large mortalities of marine organisms (e.g., fish kills); toxic contamination of filter-feeding organisms such as bivalve shellfish that subsequently enter the market for distribution to consumers; economic hardships for fisheries, aquaculture, and recreational- and tourism-related industries; and a compromised quality of life for people living or working along affected shorelines

    Environmental Hazards of Aluminum to Plants, Invertebrates, Fish, and Wildlife

    No full text
    corecore