12 research outputs found

    Interactive Proofs with Approximately Commuting Provers

    Get PDF
    The class MIP∗ of promise problems that can be decided through an interactive proof system with multiple entangled provers provides a complexity-theoretic framework for the exploration of the nonlocal properties of entanglement. Very little is known in terms of the power of this class. The only proposed approach for establishing upper bounds is based on a hierarchy of semidefinite programs introduced independently by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to a value, the field-theoretic value, that is only known to coincide with the provers’ maximum success probability in a given proof system under a plausible but difficult mathematical conjecture, Connes’ embedding conjecture. No bounds on the rate of convergence are known. We introduce a rounding scheme for the hierarchy, establishing that any solution to its N -th level can be mapped to a strategy for the provers in which measurement operators associated with distinct provers have pairwise commutator bounded by O(ℓ^2/√N) in operator norm, where ℓ is the number of possible answers per prover. Our rounding scheme motivates the introduction of a variant of quantum multiprover interactive proof systems, called MIP∗_δ in which the soundness property is required to hold against provers allowed to operate on the same Hilbert space as long as the commutator of operations performed by distinct provers has norm at most δ. Our rounding scheme implies the upper bound MIP∗_δ ⊆ DTIME(exp(exp(poly)/δ^2)). In terms of lower bounds we establish that MIP∗_(2−poly) contains NEXP with completeness 1 and soundness 1−2^(−poly). We discuss connections with the mathematical literature on approximate commutation and applications to device-independent cryptography

    Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit

    Get PDF
    Gene expression actualizes the organismal phenotypes encoded within the genome in an environment-dependent manner. Among all encoded phenotypes, cell population growth rate (fitness) is perhaps the most important, since it determines how well-adapted a genotype is in various environments. Traditional biological measurement techniques have revealed the connection between the environment and fitness based on the gene expression mean. Yet, recently it became clear that cells with identical genomes exposed to the same environment can differ dramatically from the population average in their gene expression and division rate (individual fitness). For cell populations with bimodal gene expression, this difference is particularly pronounced, and may involve stochastic transitions between two cellular states that form distinct sub-populations. Currently it remains unclear how a cell population's growth rate and its subpopulation fractions emerge from the molecular-level kinetics of gene networks and the division rates of single cells. To address this question we developed and quantitatively characterized an inducible, bistable synthetic gene circuit controlling the expression of a bifunctional antibiotic resistance gene in Saccharomyces cerevisiae. Following fitness and fluorescence measurements in two distinct environments (inducer alone and antibiotic alone), we applied a computational approach to predict cell population fitness and subpopulation fractions in the combination of these environments based on stochastic cellular movement in gene expression space and fitness space. We found that knowing the fitness and nongenetic (cellular) memory associated with specific gene expression states were necessary for predicting the overall fitness of cell populations in combined environments. We validated these predictions experimentally and identified environmental conditions that defined a “sweet spot” of drug resistance. These findings may provide a roadmap for connecting the molecular-level kinetics of gene networks to cell population fitness in well-defined environments, and may have important implications for phenotypic variability of drug resistance in natural settings

    Basic Properties of the Atomic Nucleus

    No full text
    corecore