14,828 research outputs found

    Monte Carlo Study of Ordering and Domain Growth in a Class of fcc-Alloy Models

    Full text link
    Ordering processes in fcc-alloys with composition A_3B (like Cu_3Au, Cu_3Pd, CoPt_3 etc.) are investigated by Monte Carlo simulation within a class of lattice models based on nearest-neighbor (NN) and second-neighbor (NNN) interactions. Using an atom-vacancy exchange algorithm, we study the growth of ordered domains following a temperature quench below the ordering spinodal. For zero NNN-interactions we observe an anomalously slow growth of the domain size L(t) \sim t^\alpha, where \alpha \sim 1/4 within our accessible timescales. With increasing NNN-interactions domain growth becomes faster and \alpha gradually approaches the value 1/2 as predicted by the conventional Lifshitz-Allen-Cahn theory.Comment: 6 pages, 4 figure

    Ordering kinetics in an fcc A_3B binary alloy model: Monte Carlo studies

    Full text link
    Using an atom-vacancy exchange algorithm, we investigate the kinetics of the order-disorder transition in an fcc A_3B binary alloy model following a temperature quench from the disordered phase. We observe two clearly distinct ordering scenarios depending on whether the final temperature T_f falls above or below the ordering spinodal T_{sp}, which is deduced from simulations at equilibrium. For shallow quenches (T_f>T_{sp}) we identify an incubation time tau_{inc} which characterizes the onset of ordering through the formation of overcritical ordered nuclei. The algorithm we use together with experimental information on tracer diffusion in Cu_3Au alloys allows us to estimate the physical time scale connected with tau_{inc} in that material. Deep quenches, T_f<T_{sp}, result in spinodal ordering. Coarsening processes at long times proceed substantially slower than predicted by the Lifshitz-Allen-Cahn t^{1/2} law. Structure factors related to the geometry of the two types of domain walls that appear in our model are found to be consistent with Porod's law in one and two dimensions.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Equation-free Dynamic Renormalization of a KPZ-type Equation

    Full text link
    In the context of equation-free computation, we devise and implement a procedure for using short-time direct simulations of a KPZ type equation to calculate the self-similar solution for its ensemble averaged correlation function. The method involves "lifting" from candidate pair-correlation functions to consistent realization ensembles, short bursts of KPZ-type evolution, and appropriate rescaling of the resulting averaged pair correlation functions. Both the self-similar shapes and their similarity exponents are obtained at a computational cost significantly reduced to that required to reach saturation in such systems

    Expression of the insulin-like growth factor-II/mannose-6-phosphate receptor in multiple human tissues during fetal life and early infancy

    Get PDF
    The insulin like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor has been detected in many cells and tissues. In the rat, there is a dramatic developmental regulation of IGF-II/M6P receptor expression, the receptor being high in fetal and neonatal tissues and declining thereafter. We have systematically studied the expression of the human IGF-II/M6P receptor protein in tissues from 10 human fetuses and infants (age 23 weeks gestation to 24 months postnatal). We have asked 1) whether there is differential expression among different organs, and 2) whether or not the human IGF-II/M6P receptor is developmentally regulated from 23 weeks gestation to 24 months postnatal. Protein was extracted from human tissues using a buffer containing 2% sodium dodecyl sulfate and 2% Triton X-100. Aliquots of the protein extracts were analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis and immunoblotting using an anti-IGF- II/M6P receptor antiserum (no. 66416) and 125I-protein A or an immunoperoxidase stain. IGF-II/M6P receptor immunoreactivity was detected in all tissues studied with the highest amount of receptor being expressed in heart, thymus, and kidney and the lowest receptor content being measured in brain and muscle. The receptor content in ovary, testis, lung, and spleen was intermediate. The apparent molecular weight of the IGF-II/M6P receptor (220,000 kilos without reduction of disulfide bonds) varied among the different tissues: in brain the receptor was of lower molecular weight than in other organs. Immunoquantitation experiments employing 125I-protein A and protein extracts from human kidney at different ages revealed a small, albeit not significant, difference of the receptor content between fetal and postnatal tissues: as in other species, larger amounts of receptor seemed to be present in fetal than in postnatal organs. In addition, no significant difference of the receptor content between human fetal liver and early postnatal liver was measured employing 125I-protein A- immunoquantitation in three fetal and five postnatal liver tissue samples. The distribution of IGF-binding protein (IGEBP) species, another abundant and major class of IGF binding principles, was also measured in human fetal and early postnatal lung, liver, kidney, muscle, and brain using Western ligand blotting with 125I-IGF-II: as with IGF-II/M6P receptor immunoreactivity there was differential expression of the different classes of IGFBPs in the various organs

    Program Composition and Optimization: An Introduction

    Get PDF
    Software composition connects separately defined software artifacts. Such connection may be in program structure (such as inheritance), data flow (such as message passing) and/or control flow (such as function calls or loop control)

    10191 Abstracts Collection -- Program Composition and Optimization : Autotuning, Scheduling, Metaprogramming and Beyond

    Get PDF
    From May 9 to 12, 2010, the Dagstuhl Seminar 10191 ``Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore