122 research outputs found
ER, PgR, Ki67, p27Kip1, and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab
Patient and tumor characteristics at baseline. (PDF 6Â kb
Beneficial Effect of Food Substitute Containing L-Arginine, ω-3 Poly Unsaturated Fatty Acid, and Ribonucleic Acid in Preventing or Improving Metabolic Syndrome: A Study in 15 Overweight Patients and a Study of Fatty Acid Metabolism in Animals
This study was conducted to investigate whether or not a food substitute (Dr. BAANs®) containing three bioactive components L-arginine, ω-3 polyunsaturated fatty acid, and ribonucleic acid, supplied orally to 15 overweight patients, may have efficacy to prevent or improve the metabolic syndrome of these patients. To provide supporting data for this clinical study, the in vivo fatty acid metabolism of obese mice was analyzed using 125I labeled 15-(p-iodophenyl)-9-methylpentadecanoic acid (9MPA) in the tissues’ lipid pool. After 3 months of intervention, the results showed that there were improvements observed in liver functions, lipid profiles and metabolic syndrome marker. Significant differences were also found in the values of blood pressure, body weight, percentage of body fat, and body mass index. In the animal study, the tissue uptake of 125I-9MPA at 10 min after injection was higher in obese mice than in the control mice and the treatment with Dr. BAANs® in obese mice decreased the uptake significantly. The final product metabolite of p-iodophenylacetic acid in obese mice was increased significantly by the treatment. In conclusion, this food substitute may have a beneficial effect for the prevention or improvement of metabolic syndrome
Visualization of the Activity of Rac1 Small GTPase in a Cell
Rho family G proteins including Rac regulate a variety of cellular functions, such as morphology, motility, and gene expression. Here we developed a fluorescence resonance energy transfer-based analysis in which we could monitor the activity of Rac1. To detect fluorescence resonance energy transfer, yellow fluorescent protein fused Rac1 and cyan fluorescent protein fused Cdc42-Rac1-interaction-binding domain of Pak1 protein were used as intermolecular probes of FRET. The fluorophores were separated with linear unmixing method. The fluorescence resonance energy transfer efficiency was measured by acceptor photobleaching assisted assay. With these methods, the Rac1 activity was visualized in a cell. The present findings indicate that this approach is sensitive enough to achieve results similar to those from ratiometric fluorescence resonance energy transfer analysis
Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes
Real time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers
Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles
A New Device Facilitating Intracorporeal Purse-string Suture during Endoscopic Surgery
Standard laparoscopic colorectal surgery requires additional incision or enlargement of the trocar incision for the retrieval of the surgical specimen. A natural orifice specimen extraction (NOSE) procedure, in which the specimen is retrieved through the anus or vagina without any additional skin incision, requires purse-string suture (PSS) of the rostral intestinal segment in order to fix the anvil head of the stapler and perform extracorporeal mechanical anastomosis. Colorectal surgery has a limited NOSE in cases where the end of the rostral segment could be pulled through the anus. Broader application of NOSE depends on intracorporeal PSS. We developed a new forceps for intracorporeal PSS during NOSE and evaluated its efficacy. The PSS instrument was refined to pass through a 12-mm trocar in an intracorporeal PSS and achieve anastomosis using double stapling. In trials utilizing an endoscopic practice box, regular spacing of stitches during PSS were consistent (n=10), and tight intracorporeal anastomosis of the porcine colon was successfully performed (n=2). We then confirmed efficacy through an operation on a pig. Our novel PSS device will help us perform NOSE not only in laparoscopic colorectal surgery but also in any operation requiring intracorporeal PSS, which should contribute to further advances in endoscopic digestive surgery
Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View
he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
- …