4,030 research outputs found
2D Saturable Absorbers for Fibre Lasers
© 2015.Two-dimensional (2D) nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2
Dark solitons in laser radiation build-up dynamics
We reveal the existence of slowly-decaying dark solitons in the radiation
build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber
lasers, numerically modeled in the framework of a generalized nonlinear
Schr\"odinger equation. The evolution of noise perturbations to
quasi-stationary dark solitons is examined, and the significance of background
shape and soliton-soliton collisions on the eventual soliton decay is
established. We demonstrate the role of a restoring force in extending soliton
interactions in conservative systems to include the effects of dissipation, as
encountered in laser cavities, and generalize our observations to other
nonlinear systems
Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm
Short-pulse fibre lasers are a complex dynamical system possessing a broad
space of operating states that can be accessed through control of cavity
parameters. Determination of target regimes is a multi-parameter global
optimisation problem. Here, we report the implementation of a genetic algorithm
to intelligently locate optimum parameters for stable single-pulse mode-locking
in a Figure-8 fibre laser, and fully automate the system turn-on procedure.
Stable ultrashort pulses are repeatably achieved by employing a compound
fitness function that monitors both temporal and spectral output properties of
the laser. Our method of encoding photonics expertise into an algorithm and
applying machine-learning principles paves the way to self-optimising `smart'
optical technologies
Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers
Polarization-based filtering in fiber lasers is well-known to enable spectral
tunability and a wide range of dynamical operating states. This effect is
rarely exploited in practical systems, however, because optimization of cavity
parameters is non-trivial and evolves due to environmental sensitivity. Here,
we report a genetic algorithm-based approach, utilizing electronic control of
the cavity transfer function, to autonomously achieve broad wavelength tuning
and the generation of Q-switched pulses with variable repetition rate and
duration. The practicalities and limitations of simultaneous spectral and
temporal self-tuning from a simple fiber laser are discussed, paving the way to
on-demand laser properties through algorithmic control and machine learning
schemes.Comment: Accepted for Optics Letters, 12th June 201
Scale-invariance in gravity and implications for the cosmological constant
Recently a scale invariant theory of gravity was constructed by imposing a
conformal symmetry on general relativity. The imposition of this symmetry
changed the configuration space from superspace - the space of all Riemannian
3-metrics modulo diffeomorphisms - to conformal superspace - the space of all
Riemannian 3-metrics modulo diffeomorphisms and conformal transformations.
However, despite numerous attractive features, the theory suffers from at least
one major problem: the volume of the universe is no longer a dynamical
variable. In attempting to resolve this problem a new theory is found which has
several surprising and atractive features from both quantisation and
cosmological perspectives. Furthermore, it is an extremely restrictive theory
and thus may provide testable predictions quickly and easily. One particularly
interesting feature of the theory is the resolution of the cosmological
constant problem.Comment: Replaced with final version: minor changes to text; references adde
Recent Trends in Monetary Policy. Quarterly Economic Commentary, January 1980
It is generally agreed that since our entry into the European Monetary
System (EMS) and the establishment of exchange controls the conduct of
monetary policy has become a more important element of general economic
policy. In recent times, considerable attention and discussion has been
devoted to the control of one element of monetary expansion, i.e. bank
lending to the private sector. On the other hand, there has been much less
attention to public sector credit creation.
This paper outlines a framework for monetary policy which links both
private and public sector credit creation. Recent experience of monetary
expansion is examined and the role of fiscal policy in facilitating monetary
stability is outlined. The conclusion is that unless Government borrowing is
significantly reduced from its current level, excessive monetary creation will
continue to put pressure on the external reserves and ultimately the
exchange rate
Applying the Freedom of Information Act in the Area of Federal Grant Law: Exploring an Unknown Entity
In the recent District of Columbia Court of Appeals case of Forsham v. Califano, the definition of agency records was equated with the definition of agency under the Freedom of Information Act (FOIA). The purpose of this Comment is to examine the propriety and impact of such a definition of agency records in light of the people\u27s right to know what their government is doing, using as a focal point the controversy that arose in Forsham v. Califano
FDA Approval of Generic Biologics: Finding a Regulatory Pathway
Biologics are becoming increasingly important for the potential treatment of widespread diseases such as cancer, anemia, and diabetes. As hundreds of biologics are going off-patent, the market has become ripe for the introduction of generic biologics. A regulatory pathway for biogenerics, however, is virtually nonexistent. The purpose of this paper is thus to analyze how a successful legislative pathway for generic biologics might be designed. The current regulatory scheme, economic concerns, health and safety concerns, and the need to provide proper incentives for innovation are analyzed. Finally, recent Congressional bills are outlined and critiqued, through which the structure of a successful pathway for biogeneric approval can be understood
Scale-invariant gravity: Spacetime recovered
The configuration space of general relativity is superspace - the space of
all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued
that the configuration space for gravity should be conformal superspace - the
space of all Riemannian 3-metrics modulo diffeomorphisms and conformal
transformations. Recently a manifestly 3-dimensional theory was constructed
with conformal superspace as the configuration space. Here a fully
4-dimensional action is constructed so as to be invariant under conformal
transformations of the 4-metric using general relativity as a guide. This
action is then decomposed to a (3+1)-dimensional form and from this to its
Jacobi form. The surprising thing is that the new theory turns out to be
precisely the original 3-dimensional theory. The physical data is identified
and used to find the physical representation of the theory. In this
representation the theory is extremely similar to general relativity. The
clarity of the 4-dimensional picture should prove very useful for comparing the
theory with those aspects of general relativity which are usually treated in
the 4-dimensional framework.Comment: Replaced with final version: minor changes to tex
- …