543 research outputs found

    Model tests of cluster separability in relativistic quantum mechanics

    Full text link
    A relativistically invariant quantum theory first advanced by Bakamjian and Thomas has proven very useful in modeling few-body systems. For three particles or more, this approach is known formally to fail the constraint of cluster separability, whereby symmetries and conservation laws that hold for a system of particles also hold for isolated subsystems. Cluster separability can be restored by means of a recursive construction using unitary transformations, but implementation is difficult in practice, and the quantitative extent to which the Bakamjian-Thomas approach violates cluster separability has never been tested. This paper provides such a test by means of a model of a scalar probe in a three-particle system for which (1) it is simple enough that there is a straightforward solution that satisfies Poincar\'e invariance and cluster separability, and (2) one can also apply the Bakamjian-Thomas approach. The difference between these calculations provides a measure of the size of the corrections from the Sokolov construction that are needed to restore cluster properties. Our estimates suggest that, in models based on nucleon degrees of freedom, the corrections that restore cluster properties are too small to effect calculations of observables.Comment: 13 pages, 15 figure

    The College Influence in Harrisonburg

    Get PDF

    Three-Body Elastic and Inelastic Scattering at Intermediate Energies

    Get PDF
    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. For identical bosons this results in a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. The cross sections for both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated based on a Malfliet-Tjon type potential, and the convergence of the multiple scattering series is investigated.Comment: Talk at the 18th International IUPAP Conference on Few-Body Problems in Physics, Aug. 21-26, 2006, Santos, Brazi

    Quantitative Relativistic Effects in the Three-Nucleon Problem

    Full text link
    The quantitative impact of the requirement of relativistic invariance in the three-nucleon problem is examined within the framework of Poincar\'e invariant quantum mechanics. In the case of the bound state, and for a wide variety of model implementations and reasonable interactions, most of the quantitative effects come from kinematic factors that can easily be incorporated within a non-relativistic momentum-space three-body code.Comment: 15 pages, 15 figure

    Covariant baryon charge radii and magnetic moments in a chiral constituent quark model

    Full text link
    The charge radii and magnetic moments of all the light and strange baryons are investigated within the framework of a constituent quark model based on Goldstone-boson-exchange dynamics. Following the point-form approach to relativistic quantum mechanics, the calculations are performed in a manifestly covariant manner. Relativistic (boost) effects have a sizeable influence on the results. The direct predictions of the constituent quark model are found to fall remarkably close to the available experimental data.Comment: 6 pages, 4 table

    Pointlike constituent quarks and scattering equivalences

    Full text link
    In this paper scattering equivalences are used to simplify current operators in constituent quark models. The simplicity of the method is illustrated by applying it to a relativistic constituent quark model that fits the meson mass spectrum. This model requires a non-trivial constituent quark current operator to fit the pion form factor data. A model with a different confining interaction, that has the identical spectrum and can reproduce the measured pion form factor using only point-like constituent quark impulse currents is constructed. Both the original and transformed models are relativistic direct-interaction models with a light-front kinematic subgroup.Comment: 12 pages, 6 figures, corrected caption on fig

    Covariant calculation of strange decays of baryon resonances

    Full text link
    We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point-form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtain covariant predictions of the Goldstone-boson-exchange and a variant of the one-gluon-exchange constituent quark models for all kaon decay widths of established baryon resonances. They are generally characterized by underestimating the available experimental data. In particular, the widths of kaon decays with increasing strangeness in the baryon turn out to be extremely small. We also consider the nonrelativistic limit, leading to the familiar elementary emission model, and demonstrate the importance of relativistic effects. It is found that the nonrelativistic approach evidently misses sensible influences from Lorentz boosts and some essential spin-coupling terms.Comment: 6 pages, 3 table

    Relativistic quantum theories and neutrino oscillations

    Full text link
    Neutrino oscillations are examined under the broad requirements of Poincar\'e-invariant scattering theory in an S-matrix formulation. This approach can be consistently applied to theories with either field or particle degrees of freedom. The goal of this paper is to use this general framework to identify all of the unique physical properties of this problem that lead to a simple oscillation formula. We discuss what is in principle observable, and how many factors that are important in principle end up being negligible in practice.Comment: 21 pages, no figure
    • …
    corecore