16 research outputs found

    Comparison of a body-mounted inertial sensor system–based method with subjective evaluation for detection of lameness in horses

    No full text
    Objective—To compare data obtained with an inertial sensor system with results of subjective lameness examinations performed by 3 experienced equine veterinarians for evaluation of lameness in horses. Animals—106 horses. Procedures—Horses were evaluated for lameness with a body-mounted inertial sensor system during trotting in a straight line and via subjective evaluation by 3 experienced equine practitioners who performed complete lameness examinations including lunging in a circle and limb flexion tests. Agreement among evaluators regarding results of subjective evaluations and correlations and agreements between various inertial sensor measures and results of subjective lameness evaluations were determined via calculation of Fleiss’ k statistic, regression analysis, and calculation of 95% prediction intervals. Results—Evaluators agreed on classification of horses into 3 mutually exclusive lameness categories (right limb lameness severity greater than left limb lameness severity, left limb lameness severity greater than right limb lameness severity, or equal right and left limb lameness severity) for 58.8% (k = 0.37) and 54.7% (k = 0.31) of horses for forelimb and hind limb lameness, respectively. All inertial sensor measures for forelimb and hind limb lameness were positively and significantly correlated with results of subjective evaluations. Agreement between inertial sensors measures and results of subjective evaluations was fair to moderate for forelimb lameness and slight to fair for hind limb lameness. Conclusions and Clinical Relevance—Results of lameness evaluation of horses with an inertial sensor system and via subjective lameness examinations were significantly correlated but did not have strong agreement. Inertial sensor-based evaluation may augment but not replace subjective lameness examination of horses.Kevin G. Keegan, David A. Wilson, Joanne Kramer, Shannon K. Reed, Yoshiharu Yonezawa, Hiromitchi Maki, P. Frank Pai, Marco A. F. Lope

    An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors

    No full text
    OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.Marco A. F. Lopes, Antonio C. O. Dearo, Allen Lee, Shannon K. Reed, Joanne Kramer, P. Frank Pai, Yoshiharu Yonezawa, Hiromitchi Maki, Terry L. Morgan, David A. Wilson, Kevin G. Keega
    corecore