158 research outputs found
Multidetector row CT for imaging the paediatric tracheobronchial tree
The introduction of multidetector row computed tomography (MDCT) scanners has altered the approach to imaging the paediatric thorax. In an environment where the rapid acquisition of CT data allows general hospitals to image children instead of referring them to specialist paediatric centres, it is vital that general radiologists have access to protocols appropriate for paediatric applications. Thus a dramatic reduction in the delivered radiation dose is ensured with optimal contrast bolus delivery and timing, and inappropriate repetition of the scans is avoided. This article focuses on the main principles of volumetric CT imaging that apply generically to all MDCT scanners. We describe the reconstruction techniques for imaging the paediatric thorax and the low-dose protocols used in our institution on a 16-slice detector CT scanner. Examples of the commonest clinical applications are also given
Cardiothoracic CT: one-stop-shop procedure? Impact on the management of acute pulmonary embolism
In the treatment of pulmonary embolism (PE) two groups of patients are traditionally identified, namely the hemodynamically stable and instable groups. However, in the large group of normotensive patients with PE, there seems to be a subgroup of patients with an increased risk of an adverse outcome, which might benefit from more aggressive therapy than the current standard therapy with anticoagulants. Risk stratification is a commonly used method to define subgroups of patients with either a high or low risk of an adverse outcome. In this review the clinical parameters and biomarkers of myocardial injury and right ventricular dysfunction (RVD) that have been suggested to play an important role in the risk stratification of PE are described first. Secondly, the use of more direct imaging techniques like echocardiography and CT in the assessment of RVD are discussed, followed by a brief outline of new imaging techniques. Finally, two risk stratification models are proposed, combining the markers of RVD with cardiac biomarkers of ischemia to define whether patients should be admitted to the intensive care unit (ICU) and/or be given thrombolysis, admitted to the medical ward, or be safely treated at home with anticoagulant therapy
Conscious thought beats deliberation without attention in diagnostic decision-making: at least when you are an expert
Contrary to what common sense makes us believe, deliberation without attention has recently been suggested to produce better decisions in complex situations than deliberation with attention. Based on differences between cognitive processes of experts and novices, we hypothesized that experts make in fact better decisions after consciously thinking about complex problems whereas novices may benefit from deliberation-without-attention. These hypotheses were confirmed in a study among doctors and medical students. They diagnosed complex and routine problems under three conditions, an immediate-decision condition and two delayed conditions: conscious thought and deliberation-without-attention. Doctors did better with conscious deliberation when problems were complex, whereas reasoning mode did not matter in simple problems. In contrast, deliberation-without-attention improved novices’ decisions, but only in simple problems. Experts benefit from consciously thinking about complex problems; for novices thinking does not help in those cases
Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil
[EN] Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2019). Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil. Stochastic Environmental Research and Risk Assessment. 33(1):201-216. https://doi.org/10.1007/s00477-018-1624-zS201216331Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699. https://doi.org/10.2136/sssaj1984.03615995004800040001xBellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38. https://doi.org/10.1007/s00477-003-0164-2Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsBrusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165. https://doi.org/10.1016/S0022-1694(98)00121-8Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125. https://doi.org/10.1029/1998WR900019Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516. https://doi.org/10.1007/s00477-012-0595-8Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501. https://doi.org/10.2136/sssaj1994.03615995005800050033xCapilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927. https://doi.org/10.1023/A:1007580902175Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764. https://doi.org/10.1016/j.ijrmms.2005.03.013Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. https://doi.org/10.1007/978-3-642-75015-1Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-004-0191-7de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38. https://doi.org/10.5935/0100-929X.19810003Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257. https://doi.org/10.1016/j.chemosphere.2012.10.105Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin. https://doi.org/10.1007/978-3-642-38739-5Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19. https://doi.org/10.1007/s10706-013-9704-9Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845. https://doi.org/10.1007/s12665-010-0570-yFenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2005WR004727Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2009WR007764Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res. https://doi.org/10.1029/2002WR001544Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170. https://doi.org/10.1016/S0022-1694(02)00314-1Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341. https://doi.org/10.1016/j.jhydrol.2008.11.014Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. https://doi.org/10.1029/92WR00607Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94. https://doi.org/10.1007/978-94-011-1739-5_8Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55. https://doi.org/10.1007/BF01581389Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. https://doi.org/10.1016/S0016-7061(98)00078-0Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. https://doi.org/10.4141/cjss2011-050Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. https://doi.org/10.1016/j.jenvman.2009.11.006Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40. https://doi.org/10.2118/19857-PAJournel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet. https://doi.org/10.2118/15128-MSKronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229. https://doi.org/10.1016/0009-2541(79)90124-4Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396. https://doi.org/10.2118/17652-PALawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285. https://doi.org/10.1016/j.advwatres.2006.11.005Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293. https://doi.org/10.1016/j.jhydrol.2011.05.001Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489. https://doi.org/10.1016/j.advwatres.2011.01.001Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695. https://doi.org/10.2136/sssaj2002.6860Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249. https://doi.org/10.1007/s00477-015-1075-8Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118. https://doi.org/10.1007/s00477-005-0015-4Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189. https://doi.org/10.1016/j.advwatres.2016.07.013Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034)Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man. https://doi.org/10.1007/978-1-4020-3610-1_89Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278. https://doi.org/10.1016/S0309-1708(96)00050-4Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632. https://doi.org/10.1029/91WR01107Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res. https://doi.org/10.1029/2006WR005522Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22. https://doi.org/10.1016/S0022-1694(96)80031-XScheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238. https://doi.org/10.1016/S0309-1708(98)00014-1Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338. https://doi.org/10.1080/14786435.2014.913111Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828. https://doi.org/10.1016/0148-9062(95)96996-OŠimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaTaskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82. https://doi.org/10.1007/s00477-006-0099-5Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361. https://doi.org/10.2136/sssaj2004.0332Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880. https://doi.org/10.1002/2015WR018331van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAVanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317. https://doi.org/10.2136/sssaj2000.6441305xVanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch. https://doi.org/10.1007/s00477-017-1501-1Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156. https://doi.org/10.1016/S0169-7722(97)00035-1Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230. https://doi.org/10.1016/S0098-3004(98)00126-5Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542. https://doi.org/10.1016/j.apm.2013.03.070Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679. https://doi.org/10.1002/2015WR017220Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235. https://doi.org/10.1016/j.cageo.2010.03.008Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185. https://doi.org/10.1007/s11004-011-9372-
Clinical use of biomarkers of survival in pulmonary fibrosis
<p>Abstract</p> <p>Background</p> <p>Biologic predictors or biomarkers of survival in pulmonary fibrosis with a worse prognosis, more specifically in idiopathic pulmonary fibrosis would help the clinician in deciding whether or not to treat since treatment carries a potential risk for adverse events. These decisions are made easier if accurate and objective measurements of the patients' clinical status can predict the risk of progression to death.</p> <p>Method</p> <p>A literature review is given on different biomarkers of survival in interstitial lung disease, mainly in IPF, since this disease has the worst prognosis.</p> <p>Conclusion</p> <p>Serum biomarkers, and markers measured by medical imaging as HRCT, pertechnegas, DTPA en FDG-PET are not ready for clinical use to predict mortality in different forms of ILD. A baseline FVC, a change of FVC of more than 10%, and change in 6MWD are clinically helpful predictors of survival.</p
The Drosophila melanogaster host model
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …