2,303 research outputs found

    The Molecular Basis for Different Recognition of Substrates by Phosphodiesterase Families 4 and 10

    Get PDF
    Phosphodiesterases (PDEs) are key enzymes that control the cellular concentrations of the second messengers cAMP and cGMP. The mechanism for selective recognition of substrates cAMP and cGMP by individual PDE families remains a puzzle. To understand the mechanism for substrate recognition by PDE enzymes, the crystal structure of the catalytic domain of an inactive D201N mutant of PDE4D2 in complex with substrate cAMP has been determined at 1.56 Å resolution. The structure shows that Gln369 forms only one hydrogen bond with the adenine of cAMP. This finding provides experimental evidence against the hypothesis of two hydrogen bonds between the invariant glutamine and the substrate cAMP in PDE4, and thus suggests that the widely circulated “glutamine switch” model is unlikely the mechanism for substrate recognition by PDEs. A structure comparison between PDE4D2-cAMP and PDE10A2-cAMP reveals an anti configuration of cAMP in PDE4D2 but syn in PDE10A2, in addition to different contact patterns of cAMP in these two structures. These observations imply that individual PDE families have their characteristic mechanisms for substrate recognition

    Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    Get PDF
    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes

    The value of demonstration projects for new interventions: The case of human papillomavirus vaccine introduction in low- and middle-income countries.

    Get PDF
    Demonstration projects or pilots of new public health interventions aim to build learning and capacity to inform country-wide implementation. Authors examined the value of HPV vaccination demonstration projects and initial national programmes in low-income and lower-middle-income countries, including potential drawbacks and how value for national scale-up might be increased. Data from a systematic review and key informant interviews, analyzed thematically, included 55 demonstration projects and 8 national programmes implemented between 2007-2015 (89 years' experience). Initial demonstration projects quickly provided consistent lessons. Value would increase if projects were designed to inform sustainable national scale-up. Well-designed projects can test multiple delivery strategies, implementation for challenging areas and populations, and integration with national systems. Introduction of vaccines or other health interventions, particularly those involving new target groups or delivery strategies, needs flexible funding approaches to address specific questions of scalability and sustainability, including learning lessons through phased national expansion

    A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: the coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics

    Get PDF
    Background: The coronary risk in diabetes (CoRDia) trial (n = 211) compares the effectiveness of usual diabetes care with a self-management intervention (SMI), with and without personalised risk information (including genetics), on clinical and behavioural outcomes. Here we present an assessment of randomisation, the cardiac risk genotyping assay, and the genetic characteristics of the recruits. / Methods: Ten-year coronary heart disease (CHD) risk was calculated using the UKPDS score. Genetic CHD risk was determined by genotyping 19 single nucleotide polymorphisms (SNPs) using Randox’s Cardiac Risk Prediction Array and calculating a gene score (GS). Accuracy of the array was assessed by genotyping a subset of pre-genotyped samples (n = 185). / Results: Overall, 10-year CHD risk ranged from 2–72 % but did not differ between the randomisation groups (p = 0.13). The array results were 99.8 % concordant with the pre-determined genotypes. The GS did not differ between the Caucasian participants in the CoRDia SMI plus risk group (n = 66) (p = 0.80) and a sample of UK healthy men (n = 1360). The GS was also associated with LDL-cholesterol (p = 0.05) and family history (p = 0.03) in a sample of UK healthy men (n = 1360). / Conclusions: CHD risk is high in this group of T2D subjects. The risk array is an accurate genotyping assay, and is suitable for estimating an individual’s genetic CHD risk. / Trial registration: This study has been registered at ClinicalTrials.gov; registration identifier NCT0189178

    Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by Crystal Structures and Mutagenesis

    Get PDF
    PDE9 inhibitors have been studied as therapeutics for treatment of cardiovascular diseases, diabetes, and neurodegenerative disorders. To illustrate the inhibitor selectivity, the crystal structures of the PDE9A catalytic domain in complex with the enantiomers of PDE9 inhibitor 1-(2-chlorophenyl)-6-(3,3,3-trifluoro-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-one ((R)-BAY73-6691 or (S)-BAY73-6691, 1r or 1s) were determined and mutagenesis was performed. The structures showed that the fluoromethyl groups of 1r and 1s had different orientations while the other parts of the inhibitors commonly interacted with PDE9A. These differences may explain the slightly different affinity of 1r (IC50 = 22 nM) and 1s (IC50 = 88 nM). The mutagenesis experiments revealed that contribution of the binding residues to the inhibitor sensitivity varies dramatically, from a few of folds to three orders of magnitude. On the basis of the crystal structures, a hypothesized compound that simulates the recently published PDE9 inhibitors was modeled to provide insight into the inhibitor selectivity

    An insight into the pharmacophores of phosphodiesterase-5 inhibitors from synthetic and crystal structural studies

    Get PDF
    Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660–683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Å. The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required

    Kinetic and Structural Studies of Phosphodiesterase-8A and Implication on the Inhibitor Selectivity † ‡

    Get PDF
    Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 Å resolutions, respectively. The PDE8A1 catalytic domain has KM of 1.8 μM, Vmax of 6.1 μmol/min/mg, kcat of 4.0 s−1 for cAMP, and KM of 1.6 mM, Vmax of 2.5 μmol/min/mg, kcat of 1.6 s−1 for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by KM. The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families, but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC50 = 700 μM). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several non-selective or family-selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties, but also guidelines for design of PDE8 selective inhibitors

    Dual Specificity and Novel Structural Folding of Yeast Phosphodiesterase-1 for Hydrolysis of Second Messengers Cyclic Adenosine and Guanosine 3′,5′-Monophosphate

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s–1 for cAMP and a KM of 105 μM and a kcat of 11.8 s–1 for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP
    • …
    corecore