21 research outputs found

    Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    Get PDF
    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing SCAD gene mutations and/or variants. SCAD gene variants are present in homozygous form in approximately 6% of the general population and considered to confer susceptibility to development of clinical disease. Clinically, SCADD generally appears to present early in life and to be most frequently associated with developmental delay, hypotonia, epilepsy, behavioral disorders, and hypoglycemia. However, these symptoms often ameliorate and even disappear spontaneously during follow-up and were found to be unrelated to the SCAD genotype. In addition, in some cases, symptoms initially attributed to SCADD could later be explained by other causes. Finally, SCADD relatives of SCADD patients as well as almost all SCADD individuals diagnosed by neonatal screening remained asymptomatic during follow-up. This potential lack of clinical consequences of SCADD has several implications. First, the diagnosis of SCADD should never preclude extension of the diagnostic workup for other potential causes of the observed symptoms. Second, patients and parents should be clearly informed about the potential lack of relevance of the disorder to avoid unfounded anxiety. Furthermore, to date, SCADD is not an optimal candidate for inclusion in newborn screening programs. More studies are needed to fully establish the relevance of SCADD and solve the question as to whether SCADD is involved in a multifactorial disease or represents a nondisease

    Analysis of repetitive DNA in chromosomes by flow cytometry

    No full text
    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in Chinese hamster chromosomes and major satellite sequences in mouse chromosomes. Using CFF we also identified parental homologs of human chromosome 18 with different amounts of repetitive DNA

    A Rare Case of Short-Chain Acyl-COA Dehydrogenase Deficiency: The Apparent Rarity of the Disorder Results in Under Diagnosis

    No full text
    Short-chain acyl-CoA dehydrogenase (ACAD) deficiency is an extremely rare inherited mitochondrial disorder of fat metabolism. This belongs to a group of diseases known as fatty acid oxidation disorders. Screening programmes have provided evidence that all the fatty acid oxidation disorders combined are among the most common inborn errors of metabolism. Mitochondrial beta oxidation of fatty acids is an essential energy producing pathway. It is a particularly important pathway during prolonged periods of starvation and during periods of reduced caloric intake due to gastrointestinal illness or increased energy expenditure during febrile illness. The most common presentation is an acute episode of life threatening coma and hypoglycemia induced by a period of fasting due to defective hepatic ketogenesis. Here, the case of a 4 month old female patient who had seizures since the third day of her birth and persistent hypoglycemia is described. She was born to parents of second degree consanguinity after 10 years of infertility treatment. There was history of delayed cry after birth. Metabolic screening for TSH, galactosemia, 17-OHP, G6PD, cystic fibrosis, biotinidase were normal. Tandem mass spectrometric (TMS) screening for blood amino acids, organic acids, fatty acids showed elevated butyryl carnitine (C4) as 3.40 Όmol/L (normal <2.00 Όmol/L), hexanoyl carnitine (C6) as 0.92 Όmol/L (normal <0.72 Όmol/L), C4/C3 as 2.93 Όmol/L (normal <1.18 Όmol/L). The child was started immediately on carnitor syrup (carnitine) 1/2 ml twice daily. Limitation of fasting stress and dietary fat was advised. Baby responded well by gaining weight and seizures were controlled. Until now, less than 25 patients have been reported worldwide. The limited number of patients diagnosed until now is due to the rarity of the disorder resulting in under diagnosis

    Metal Complexes as Structure-Directing Agents for Zeolites and Related Microporous Materials

    No full text
    Metal complexes can act as structure-directing agents (SDAs) for zeolites and zeotypes, either alone or together with additional SDAs in dual-templating approaches. Such complexes include organometallic cobaltocenium ions, alkali metal crown ether complexes, first-row transition-metal (Fe, Co, Ni, Cu) poly-amines and thiol-complexed second-and third-row transition metals (Pd, Pt). Their inclusion has been demonstrated in some cases by crystallographic methods but more commonly by spectroscopy (UV-visible, X-ray absorption, M€ossbauer). The unique feature of this class of template is that they can not only direct crystallisation but also give solids with homogeneously distributed metal cations or metal oxide species upon calcination, precluding the need for an additional post-synthesis modification step. Materials prepared via this ‘one-pot’ synthetic route have been shown to give shape-selective catalysts for reactions such as the selective catalytic reduction of NOx with ammonia and the hydrogenation, dehydration and oxidative dehydrogenation of small hydrocarbons and oxygenates.</p
    corecore