102 research outputs found
Unexpectedly rapid evolution of mandibular shape in hominins
Members of the hominins – namely the so-called ‘australopiths’ and the species of the genus Homo – are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch ()
Background
Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system.
Results
Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies.
Conclusions
Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences
The evolution of acoustic size exaggeration in terrestrial mammals
Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production
Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).
BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown.
RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups.
CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects
Role of Factor VII in Correcting Dilutional Coagulopathy and Reducing Re-operations for Bleeding Following Non-traumatic Major Gastrointestinal and Abdominal Surgery
Objective The objective of this study is to evaluate the effectiveness of rfVIIa in reducing blood product requirements and re-operation for postoperative bleeding after major abdominal surgery. Background Hemorrhage is a significant complication after major gastrointestinal and abdominal surgery. Clinically significant bleeding can lead to shock, transfusion of blood products, and re-operation. Recent reports suggest that activated rfVIIa may be effective in correcting coagulopathy and decreasing the need for re-operation. Methods This study was a retrospective review over a 4-year period of 17 consecutive bleeding postoperative patients who received rfVIIa to control hemorrhage and avoid re-operation. Outcome measures were blood and clotting factor transfusions, deaths, thromboembolic complications, and number of re-operations for bleeding. Results Seventeen patients with postoperative hemorrhage following major abdominal gastrointestinal surgery (nine pancreas, four sarcoma, two gastric, one carcinoid, and one fistula) were treated with rfVIIa. In these 17 patients, rfVIIa was administered for 18 episodes of bleeding (dose 2,400-9,600 mcg, 29.8-100.8 mcg/kg). Transfusion requirement of pRBC and FFP were each significantly less than pre-rfVIIa. Out of the 18 episodes, bleeding was controlled in 17 (94%) without surgery, and only one patient returned to the operating room for hemorrhage. There were no deaths and two thrombotic complications. Coagulopathy was corrected by rfVIIa from 1.37 to 0.96 (p<0.0001). Conclusion Use of rfVIIa in resuscitation for hemorrhage after non-traumatic major abdominal and gastrointestinal surgery can correct dilutional coagulopathy, reducing blood product requirements and need for re-operation
Persistence of single species of symbionts across multiple closelyrelated host species
Some symbiont species are highly host-specific, inhabiting only one or a very few host species, and
typically have limited dispersal abilities. When they do occur on multiple host species, populations of
such symbionts are expected to become genetically structured across these different host species,
and this may eventually lead to new symbiont species over evolutionary timescales. However, a low
number of dispersal events of symbionts between host species across time might be enough to prevent
population structure and species divergence. Overall, processes of evolutionary divergence and the
species status of most putative multi-host symbiont systems are yet to be investigated. Here, we used
DNA metabarcoding data of 6,023 feather mites (a total of 2,225 OTU representative sequences) from
147 infracommunities (i.e., the assemblage consisting of all mites of different species collected from
the same bird host individual) to investigate patterns of population genetic structure and species status
of three different putative multi-host feather mite species Proctophyllodes macedo Vitzthum, 1922,
Proctophyllodes motacillae Gaud, 1953, and Trouessartia jedliczkai (Zimmerman, 1894), each of which
inhabits a variable number of different closely related wagtail host species (genus Motacilla). We show
that mite populations from different host species represent a single species. This pattern was found in
all the mite species, suggesting that each of these species is a multi-host species in which dispersal of
mites among host species prevents species divergence. Also, we found evidence of limited evolutionary
divergence manifested by a low but significant level of population genetic structure among symbiont
populations inhabiting different host species. Our study agrees with previous studies showing a higher
than expected colonization opportunities in host-specific symbionts. Indeed, our results support
that these dispersal events would allow the persistence of multi-host species even in symbionts with
limited dispersal capabilities, though additional factors such as the geographical structure of some bird
populations may also play a role.This work was supported by the MINECO CGL2011-24466 to RJ and
CGL2015-69650-P to RJ and DS
Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean
Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M. tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen
A Pilot Study of Abnormal Growth in Autism Spectrum Disorders and Other Childhood Psychiatric Disorders
The aims of the current study were to examine whether early growth abnormalities are (a) comparable in autism spectrum disorders (ASD) and other childhood psychiatric disorders, and (b) specific to the brain or generalized to the whole body. Head circumference, height, and weight were measured during the first 19 months of life in 129 children with ASD and 59 children with non-ASD psychiatric disorders. Both groups showed comparable abnormal patterns of growth compared to population norms, especially regarding height and head circumference in relation to height. Thus abnormal growth appears to be related to psychiatric disorders in general and is mainly expressed as an accelerated growth of height not matched by an increase in weight or head circumference
Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia
While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia
- …
