152 research outputs found

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu

    Measuring the complex admittance of a carbon nanotube double quantum dot.

    Get PDF
    We investigate radio-frequency (rf) reflectometry in a tunable carbon nanotube double quantum dot coupled to a resonant circuit. By measuring the in-phase and quadrature components of the reflected rf signal, we are able to determine the complex admittance of the double quantum dot as a function of the energies of the single-electron states. The measurements are found to be in good agreement with a theoretical model of the device in the incoherent limit. In addition to being of fundamental interest, our results present an important step forward towards noninvasive charge and spin state readout in carbon nanotube quantum dots

    Coupling molecular spin states by photon-assisted tunneling

    Get PDF
    Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunneling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunneling processes have been treated as electric dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunneling transitions between states with different spin. In this work, the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two spin system via microwave excitation.Comment: 13 pages, 9 figure

    Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    Get PDF
    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon

    The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have suggested that the symptoms of knee osteoarthritis (OA) are rather weakly associated with radiographic findings and vice versa. Our objectives were to identify estimates of the prevalence of radiographic knee OA in adults with knee pain and of knee pain in adults with radiographic knee OA, and determine if the definitions of x ray osteoarthritis and symptoms, and variation in demographic factors influence these estimates.</p> <p>Methods</p> <p>A systematic literature search identifying population studies which combined x rays, diagnosis, clinical signs and symptoms in knee OA. Estimates of the prevalence of radiographic OA in people with knee pain were determined and vice versa. In addition the effects of influencing factors were scrutinised.</p> <p>Results</p> <p>The proportion of those with knee pain found to have radiographic osteoarthritis ranged from 15–76%, and in those with radiographic knee OA the proportion with pain ranged from 15% – 81%. Considerable variation occurred with x ray view, pain definition, OA grading and demographic factors</p> <p>Conclusion</p> <p>Knee pain is an imprecise marker of radiographic knee osteoarthritis but this depends on the extent of radiographic views used. Radiographic knee osteoarthritis is likewise an imprecise guide to the likelihood that knee pain or disability will be present. Both associations are affected by the definition of pain used and the nature of the study group. The results of knee x rays should not be used in isolation when assessing individual patients with knee pain.</p

    Photon Emission from a Cavity-Coupled Double Quantum Dot

    No full text
    We study a voltage biased InAs double quantum dot (DQD) that is coupled to a superconducting transmission line resonator. Inelastic tunneling in the DQD is mediated by electron phonon coupling and coupling to the cavity mode. We show that electronic transport through the DQD leads to photon emission from the cavity at a rate of 10 MHz. With a small cavity drive field, we observe a gain of up to 15 in the cavity transmission. Our results are analyzed in the context of existing theoretical models and suggest that it may be necessary to account for inelastic tunneling processes that proceed via simultaneous emission of a phonon and a photon
    • …
    corecore