36 research outputs found
Challenges in enriching milk fat with polyunsaturated fatty acids
Milk fatty acid composition is determined by several factors including diet. The milk fatty acid profile of dairy cows is low in polyunsaturated fatty acids, especially those of the n-3 series. Efforts to change and influence fatty acid profile with longer chain polyunsaturated fatty acids have proven challenging. Several barriers prevent easy transfer of dietary polyunsaturated fatty acids to milk fat including rumen biohydrogenation and fatty acid esterification. The potential for cellular uptake and differences in fatty acid incorporation into milk fat might also have an effect, though this has received less research effort. Given physiological impediments to enriching milk fat with polyunsaturated fatty acids, manipulating the genome of the cow might provide a greater increase than diet alone, but this too may be challenged by the physiology of the cow
One-step electrodeposition synthesis and electrochemical properties of Cu6Sn5 alloy anodes for lithium-ion batteries
Lithiation/delithiation performance of Sn–Co alloy anode using rough Cu foil as current collector
Influence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix
The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2
Lithium can be reversibly intercalated into layered Li1+xV1−xO2 (LiCoO2 structure) at ∼0.1 V, but only if x>0. The low voltage combined with a higher density than graphite results in a higher theoretical volumetric energy density; important for future applications in portable electronics and electric vehicles. Here we investigate the crucial question, why Li cannot intercalate into LiVO2 but Li-rich compositions switch on intercalation at an unprecedented low voltage for an oxide? We show that Li+ intercalated into tetrahedral sites are energetically more stable for Li-rich compositions, as they share a face with Li+ on the V site in the transition metal layers. Li incorporation triggers shearing of the oxide layers from cubic to hexagonal packing because the Li2VO2 structure can accommodate two Li per formula unit in tetrahedral sites without face sharing. Such understanding is important for the future design and optimization of low-voltage intercalation anodes for lithium batteries
