22 research outputs found
From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance.
We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices
Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale
The detection of sound begins when energy derived from acoustic stimuli
deflects the hair bundles atop hair cells. As hair bundles move, the viscous
friction between stereocilia and the surrounding liquid poses a fundamental
challenge to the ear's high sensitivity and sharp frequency selectivity. Part
of the solution to this problem lies in the active process that uses energy for
frequency-selective sound amplification. Here we demonstrate that a
complementary part involves the fluid-structure interaction between the liquid
within the hair bundle and the stereocilia. Using force measurement on a
dynamically scaled model, finite-element analysis, analytical estimation of
hydrodynamic forces, stochastic simulation and high-resolution interferometric
measurement of hair bundles, we characterize the origin and magnitude of the
forces between individual stereocilia during small hair-bundle deflections. We
find that the close apposition of stereocilia effectively immobilizes the
liquid between them, which reduces the drag and suppresses the relative
squeezing but not the sliding mode of stereociliary motion. The obliquely
oriented tip links couple the mechanotransduction channels to this least
dissipative coherent mode, whereas the elastic horizontal top connectors
stabilize the structure, further reducing the drag. As measured from the
distortion products associated with channel gating at physiological stimulation
amplitudes of tens of nanometres, the balance of forces in a hair bundle
permits a relative mode of motion between adjacent stereocilia that encompasses
only a fraction of a nanometre. A combination of high-resolution experiments
and detailed numerical modelling of fluid-structure interactions reveals the
physical principles behind the basic structural features of hair bundles and
shows quantitatively how these organelles are adapted to the needs of sensitive
mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please
see the online version of the article at http://www.nature.com/natur
Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels
The hair cell's mechanoreceptive organelle, the hair bundle, is highly
sensitive because its transduction channels open over a very narrow range of
displacements. The synchronous gating of transduction channels also underlies
the active hair-bundle motility that amplifies and tunes responsiveness. The
extent to which the gating of independent transduction channels is coordinated
depends on how tightly individual stereocilia are constrained to move as a
unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that
thermal movements of stereocilia located as far apart as a bundle's opposite
edges display high coherence and negligible phase lag. Because the mechanical
degrees of freedom of stereocilia are strongly constrained, a force applied
anywhere in the hair bundle deflects the structure as a unit. This feature
assures the concerted gating of transduction channels that maximizes the
sensitivity of mechanoelectrical transduction and enhances the hair bundle's
capacity to amplify its inputs.Comment: 24 pages, including 6 figures, published in 200
Simulation of the Response of the Inner Hair Cell Stereocilia Bundle to an Acoustical Stimulus
Mammalian hearing relies on a cochlear hydrodynamic sensor embodied in the inner
hair cell stereocilia bundle. It is presumed that acoustical stimuli induce a
fluid shear-driven motion between the tectorial membrane and the reticular
lamina to deflect the bundle. It is hypothesized that ion channels are opened by
molecular gates that sense tension in tip-links, which connect adjacent stepped
rows of stereocilia. Yet almost nothing is known about how the fluid and bundle
interact. Here we show using our microfluidics model how each row of stereocilia
and their associated tip links and gates move in response to an acoustical input
that induces an orbital motion of the reticular lamina. The model confirms the
crucial role of the positioning of the tectorial membrane in hearing, and
explains how this membrane amplifies and synchronizes the timing of peak tension
in the tip links. Both stereocilia rotation and length change are needed for
synchronization of peak tip link tension. Stereocilia length change occurs in
response to accelerations perpendicular to the oscillatory fluid shear flow.
Simulations indicate that nanovortices form between rows to facilitate diffusion
of ions into channels, showing how nature has devised a way to solve the
diffusive mixing problem that persists in engineered microfluidic devices
Collision sellar lesions: experience with eight cases and review of the literature
The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
Engineering biomimetic hair bundle sensors for underwater sensing applications
© 2018 Author(s). We present the fabrication of an artificial MEMS hair bundle sensor designed to approximate the structural and functional principles of the flow-sensing bundles found in fish neuromast hair cells. The sensor consists of micro-pillars of graded height connected with piezoelectric nanofiber "tip-links" and encapsulated by a hydrogel cupula-like structure. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. These biomimetic sensors achieve an ultrahigh sensitivity of 0.286 mV/(mm/s) and an extremely low threshold detection limit of 8.24 μm/s. A complete version of this paper has been published [1]
From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance
© The Author(s) 2016. We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices