2,133 research outputs found

    How to Make Educational Lemonade Out of a Didactic Lemon: The Benefits of Listening to Your Students

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151359/1/ase1861.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151359/2/ase1861_am.pd

    Brownian bridges to submanifolds

    Get PDF
    We introduce and study Brownian bridges to submanifolds. Our method involves proving a general formula for the integral over a submanifold of the minimal heat kernel on a complete Riemannian manifold. We use the formula to derive lower bounds, an asymptotic relation and derivative estimates. We also see a connection to hypersurface local time. This work is motivated by the desire to extend the analysis of path and loop spaces to measures on paths which terminate on a submanifold

    Seeing Tree Structure from Vibration

    Full text link
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://tree.csail.mit.edu

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe

    Potential use of the Bushmint, Hyptis suaveolens, for the Control of Infestation by the Pink Stalk Borer, Sesamia calamistis on Maize in Southern Benin, West Africa

    Get PDF
    Maize production in Benin, especially in resource-poor farmers' fields, is constrained by stemborers among other factors. One of the major stemborers in southern Benin is Sesamia calamistis Hampson (Lepidoptera: Noctuidae). African farmers cannot afford to use commercial insecticides for controlling stemborers - they are expensive and unsuitable for durable pest management systems due to eco-toxicity. There is therefore a need for cheaper and environmentally friendly methods and botanicals offer an attractive alternative. The bushmint, Hyptis suaveolens (L.) Poit. (Lamiales: Lamiaceae), was compared with the commercial insecticide Furadan (carbofuran) for the control of S. calamistis on maize Zea mays L. (Poales: Poaceae). Trials were conducted in the screenhouse and in the field during the minor cropping season in 2004 at the International Institute of Tropical Agriculture (IITA)-Benin station. The variables measured included numbers of egg masses per plant, eggs per egg mass (in the screenhouse study), population density of S. calamistis, percentage of infested plants and/or ears, and deadhearts in the field. Irrespective of the variable considered, the aqueous extract of H. suaveolens compared favorably with Furadan while maize surrounded by live H. suaveolens plants had lower S. calamistis densities

    Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties.

    Get PDF
    Tendons are viscoelastic, which implies loading rate dependency, but loading rates of contractions are often not controlled during assessment of human tendon mechanical properties in vivo. We investigated the effects of sustained submaximal isometric plantarflexion contractions, which potentially negate loading rate dependency, on the stiffness of the human Achilles tendon in vivo using dynamometry and ultrasonography. Maximum voluntary contractions (high loading rate), ramp maximum force contractions with 3 s loading (lower loading rate) and sustained contractions (held for 3 s) at 25%, 50% and 80% of maximal tendon force were conducted. No loading rate effect on stiffness (25-80% max. tendon force) was found. However, loading rate effects were seen up to 25% of maximum tendon force, which were reduced by the sustained method. Sustained plantarflexion contractions may negate loading rate effects on tendon mechanical properties and appear suitable for assessing human Achilles tendon stiffness in vivo

    Pain coping skills training for African Americans with osteoarthritis (STAART): study protocol of a randomized controlled trial

    Get PDF
    Background: African Americans bear a disproportionate burden of osteoarthritis (OA), with higher prevalence rates, more severe pain, and more functional limitations. One key barrier to addressing these disparities has been limited engagement of African Americans in the development and evaluation of behavioral interventions for management of OA. Pain Coping Skills Training (CST) is a cognitive-behavioral intervention with shown efficacy to improve OA-related pain and other outcomes. Emerging data indicate pain CST may be a promising intervention for reducing racial disparities in OA symptom severity. However, there are important gaps in this research, including incorporation of stakeholder perspectives (e.g. cultural appropriateness, strategies for implementation into clinical practice) and testing pain CST specifically among African Americans with OA. This study will evaluate the effectiveness of a culturally enhanced pain CST program among African Americans with OA. Methods/Design: This is a randomized controlled trial among 248 participants with symptomatic hip or knee OA, with equal allocation to a pain CST group and a wait list (WL) control group. The pain CST program incorporated feedback from patients and other stakeholders and involves 11 weekly telephone-based sessions. Outcomes are assessed at baseline, 12 weeks (primary time point), and 36 weeks (to assess maintenance of treatment effects). The primary outcome is the Western Ontario and McMaster Universities Osteoarthritis Index, and secondary outcomes include self-efficacy, pain coping, pain interference, quality of life, depressive symptoms, and global assessment of change. Linear mixed models will be used to compare the pain CST group to the WL control group and explore whether participant characteristics are associated with differential improvement in the pain CST program. This research is in compliance with the Helsinki Declaration and was approved by the Institutional Review Boards of the University of North Carolina at Chapel Hill, Durham Veterans Affairs Medical Center, East Carolina University, and Duke University Health System. Discussion: This culturally enhanced pain CST program could have a substantial impact on outcomes for African Americans with OA and may be a key strategy in the reduction of racial health disparities.Funded by Patient-Centered Outcomes Research Institute (PCORI) Award (AD-1408-19519)

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales
    corecore