19 research outputs found
Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries
Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region
Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain
This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia
Can We Detect Changes in Amazon Forest Structure Using Measurements of the Isotopic Composition of Precipitation?
Large‐scale (>500 km) spatial gradients of precipitation oxygen isotope‐ratios (δ18Op) hold information about the hydrological cycle. They result from the interplay between rainout and evapotranspiration along air‐parcel paths, but these counteracting effects are difficult to disentangle complicating quantification of the effect of land cover change on δ18Op. We show that disentangling can qualitatively be achieved using climate model simulations with a land‐derived precipitation tracer for tropical South America. We then either vary land cover as observed since 1870 or by replacing Amazon forests with bare land to determine the resulting signals. Our results indicate that effects of historically changing land cover on annual mean δ18O isotope‐ratio gradients are small and unlikely detectable, although there is a noticeable signal during the dry season. Furthermore, the effect of changes in water recycling on Amazon δ18Op in paleo‐records may have been overestimated and need reinterpretation
Retrospection of heatwave and heat index
The frequency and intensity of extreme events especially heat waves (HW) are growing all around the world which ultimately poses a serious threat to the health of individuals. To quantify the effects of extreme temperature, appropriate information, and the importance of HW and heat index (HI) are carefully discussed for different parts of the world. Varied definitions of the HW and HI formula proposed and used by different countries are carried out systematically continent-wise. Different studies highlighted the number of definitions of HW; however, mostly used Steadman’s formulae, which was developed in the late 1970s, for the calculation of HI that uses surface air temperature and relative humidity as climatic fields. Since then, dramatic changes in climatic conditions have been observed as evident from the ERA5 datasets which need to be addressed; likewise, the definition of HW, which is modified by the researchers as per the geographic conditions. It is evident from the ERA5 data that the temperature has increased by 1–2 °C as compared to the 1980s. There is a threefold increase in the number of heatwave days over most of the continents in the last 40 years. This study will help the researcher community to understand the importance of HW and HI. Furthermore, it opens the scope to develop an equation based on the present scenario keeping in mind the basics of an index as considered by Steadman
Changing Climate over Chad: Is the Rainfall over the Major Cities Recovering?
Chad is the largest country of the Sahel region with different climatic zones, varying from arid in the north to tropical in the south. These climatic zones respond differently to climate change signals. Therefore, their detection over major cities, which are scattered within different climatic zones, is of utmost importance. The changes in hydroclimatic fields such as rainfall and temperature were examined over the major cities in various regions for the period 1950 to 2014. Rainfall shows a significant decreasing trend especially over cities close to Lake Chad (Lere, Mondou, Mongo and Sarh), whereas no significant trend is observed for cities farther from the Lake. However, a consistently increasing trend in temperature is found across all cities. The cities in the north (Faya, Abeche, and Ati) receive far less rainfall than those located in southern Chad. All cities (except Faya and Lere) received higher rainfall during 1950 – 1965 (wet period), entering a dry regime between 1966 – 1990 (dry period) and subsequently recovering rainfall totals, toward previous levels, between 1991 – 2014 (recovery phase). A substantial rise in air temperature is observed after 1980 – 1985, reflecting the gradual rise of temperature in recent times. In summary, rainfall is recovering from a dry regime and temperature is rising over all the major cities of Chad. More researches in this region is needed to develop local scale mitigation strategies and adaptation technology
A Spatial and Temporal Risk Assessment of the Impacts of El Niño on the Tropical Forest Carbon Cycle: Theoretical Framework, Scenarios, and Implications
Strong El Niño events alter tropical climates and may lead to a negative carbon balance in tropical forests and consequently a disruption to the global carbon cycle. The complexity of tropical forests and the lack of data from these regions hamper the assessment of the spatial distribution of El Niño impacts on these ecosystems. Typically, maps of climate anomaly are used to detect areas of greater risk, ignoring baseline climate conditions and forest cover. Here, we integrated climate anomalies from the 1982–1983, 1997–1998, and 2015–2016 El Niño events with baseline climate and forest edge extent, using a risk assessment approach to hypothetically assess the spatial and temporal distributions of El Niño risk over tropical forests under several risk scenarios. The drivers of risk varied temporally and spatially. Overall, the relative risk of El Niño has been increasing driven mainly by intensified forest fragmentation that has led to a greater chance of fire ignition and increased mean annual air temperatures. We identified areas of repeated high risk, where conservation efforts and fire control measures should be focused to avoid future forest degradation and negative impacts on the carbon cycle
Fate of Rainfall Over the North Indian States in the 1.5 and 2°C Warming Scenarios
Rise in mean temperature put a great deal of uncertainty about how weather and climate extremes may play out, particularly in India's varied climatic zones. Consequently, it is important to understand the possible changes in both magnitude and direction of weather and climate extremes like rainfall for different warming levels of 1.5 and 2°C scenarios concerning preindustrial and present levels. Hence in the present study, the precipitation behavior of seven North Indian states that is, Haryana, Himachal Pradesh, J&K, Punjab, Rajasthan, Uttar Pradesh, and Uttarakhand carefully studied using CMIP5 models. Future projections of precipitation has been done for the Paris Agreement global warming level of 1.5 and 2°C scenarios. Along with model validation and future projections of precipitation, the return period of extreme rainfall is also discussed to understand the behavior of the occurrence of extreme precipitation. Statistical analysis shows that the ensemble means have the least error as compared to the other six CMIP5 models. Therefore, future analysis has been done with the ensemble mean. Our findings show that the precipitation is likely to decrease in the 1.5°C scenarios, while it is likely to increase in the 2°C scenarios. The occurrence and intensity of extreme rainfall events are likely to be more frequent in all the models. The return period of the extreme rainfall events is likely to increase in all the states in both the warming scenarios. A three-fold rise is likely to increase extreme rainfall events in the 2°C scenario
Observed climate variability over Chad using multiple observational and reanalysis datasets
Chad is the largest of Africa's landlocked countries and one of the least studied region of the African continent. The major portion of Chad lies in the Sahel region, which is known for its rapid climate change. In this study, multiple observational datasets are analyzed from 1950 to 2014, in order to examine the trend of precipitation and temperature along with their variability over Chad to understand possible impacts of climate change over this region. Trend analysis of the climatic fields has been carried out using Mann-Kendall test. The precipitation over Chad is mostly contributed during summer by West African Monsoon, with maximum northward limit of 18° N. The Atlantic Ocean as well as the Mediterranean Sea are the major source of moisture for the summer rainfall over Chad. Based on the rainfall time series, the entire study period has been divided in to wet (1950 to 1965), dry (1966 to 1990) and recovery period (1991 to 2014). The rainfall has decreased drastically for almost 3 decades during the dry period resulted into various drought years. The temperature increases at a rate of 0.15 °C/decade during the entire period of analysis. The seasonal rainfall as well as temperature plays a major role in the change of land use/cover. The decrease of monsoon rainfall during the dry period reduces the C4 cover drastically; this reduction of C4 grass cover leads to increase of C3 grass cover. The slow revival of rainfall is still not good enough for the increase of shrub cover but it favors the gradual reduction of bare land over Chad
Investigation of the snow-monsoon relationship in a warming atmosphere using Hadley Centre climate model
Several studies based on observed data and models show that there is an inverse relationship between the strength of the Indian summer monsoon and the extent/depth of Eurasian snow in the preceding season. Perturbed Physics Ensemble (PPE) simulations of Hadley Centre Coupled Model version 3 (HadCM3) have been used in this study to re-examine the snow-monsoon relationship in the longer time scale. The PPE monthly precipitation values during June, July, August and September (JJAS) have been compared with the corresponding values of Climatic Research Unit (CRU) of the University of East Anglia (UEA), UK for the period 1961-1990. The PPEs which simulated the Indian summer monsoon reasonably well have been used for examining snow-monsoon relationship. Atmospheric fields such as wind, geopotential height, velocity potential and stream function from the PPE simulations have been examined in detail. Results show that because of the west Eurasian snow depth anomalies, the mid-latitude circulation undergoes significant changes, which in turn lead to weak/strong monsoon circulation during deficient/excess Indian Summer Monsoon Rainfall (ISMR) respectively. The first Empirical Orthogonal Function (EOF1) of winter snow depth for the period 1961-1990 over the whole of Eurasia explains 13% variability. Thus the significant correlation patterns are consistent with the most dominant EOF of snow depth, in which the first mode describes a dipole type structure as observed. The study confirms that snow depth in the western part of Eurasia (20°E-65°E and 45°N-65°N) has negative correlation with the ISMR
Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2
In this study, a smaller domain over India alone and a larger South Asia (SA) domain have been used in the Regional Climate Model version 4.2 (RegCM4.2) to examine the effect of the domain size on the Indian summer monsoon simulations. These simulations were carried out over a period of 36 years at 50 km horizontal resolution with the lateral boundary forcings of the UK Met Office Hadley Centre Global Circulation Model Version 2.0. Results show that the Indian summer monsoon rainfall is significantly reduced when the domain size for the model integration is reduced from SA to the Indian domain. In case of SA domain simulation, the Equitable Threat Scores have higher values in case of very light, light and moderate rainfall events than those in case of the Indian domain simulation. It is also found that the domain size of model integration has dominant impact on the simulated convective precipitation. The cross-equatorial flow and the Somali Jet are better represented in the SA simulation than those in the Indian domain simulation. The vertically integrated moisture flux over the Arabian Sea in the SA domain simulation is close to that in the NCEP/NCAR reanalysis while it is underestimated in the Indian domain simulation. It is important to note that when RegCM4.2 is integrated over the smaller Indian domain, the effects of the Himalayas and the moisture advection from the Indian seas are not properly represented in the model simulation and hence the monsoon circulation and associated rainfall are underestimated over India