13 research outputs found

    Metastable Pores at the Onset of Constant-Current Electroporation

    Get PDF
    Single metastable nanopores, appearing before the actual electroporation under constant-current conditions, are used to characterize the onset of electroporation. Unlike the long-lived electropores typical of the current controlled methods, these pores survive for milliseconds and observing them is possible due to slow development of electroporation, provided by the gradual accumulation of charges on a planar membrane. Analysis of the metastable pore appearance frequency and lifetime shows the first introductory stage of electroporation. During this stage two species of metastable pores open, the majority of very low conductance that seem not fully developed as hydrophilic electropores. The experiments reveal that voltage value defines the electroporation onset while the current value affects the rate of electroporation. Membrane capacitance has a great impact on the membrane susceptibility to the pore appearance, related to its thickness and integrity. Pores of nonperfect membranes appear more easily, but they do not live any longer than others

    Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism

    Get PDF
    Background: \ud The question of how the aggregation of the neuronal protein α-synuclein contributes to neuronal toxicity in Parkinson's disease has been the subject of intensive research over the past decade. Recently, attention has shifted from the amyloid fibrils to soluble oligomeric intermediates in the α-synuclein aggregation process. These oligomers are hypothesized to be cytotoxic and to permeabilize cellular membranes, possibly by forming pore-like complexes in the bilayer. Although the subject of α-synuclein oligomer-membrane interactions has attracted much attention, there is only limited evidence that supports the pore formation by α-synuclein oligomers. In addition the existing data are contradictory.\ud \ud Methodology/Principal Findings:\ud Here we have studied the mechanism of lipid bilayer disruption by a well-characterized α-synuclein oligomer species in detail using a number of in vitro bilayer systems and assays. Dye efflux from vesicles induced by oligomeric α-synuclein was found to be a fast all-or-none process. Individual vesicles swiftly lose their contents but overall vesicle morphology remains unaltered. A newly developed assay based on a dextran-coupled dye showed that non-equilibrium processes dominate the disruption of the vesicles. The membrane is highly permeable to solute influx directly after oligomer addition, after which membrane integrity is partly restored. The permeabilization of the membrane is possibly related to the intrinsic instability of the bilayer. Vesicles composed of negatively charged lipids, which are generally used for measuring α-synuclein-lipid interactions, were unstable to protein adsorption in general.\ud \ud Conclusions/Significance:\ud The dye efflux from negatively charged vesicles upon addition of α-synuclein has been hypothesized to occur through the formation of oligomeric membrane pores. However, our results show that the dye efflux characteristics are consistent with bilayer defects caused by membrane instability. These data shed new insights into potential mechanisms of toxicity of oligomeric α-synuclein species
    corecore