117 research outputs found
Attempting to distinguish between endogenous and contaminating cytokeratins in a corneal proteomic study
<p>Abstract</p> <p>Background</p> <p>The observation of cytokeratins (CK's) in mass spectrometry based studies raises the question of whether the identified CK is a true endogenous protein from the sample or simply represents a contaminant. This issue is especially important in proteomic studies of the corneal epithelium where several CK's have previously been reported to mark the stages of differentiation from corneal epithelial stem cell to the differentiated cell.</p> <p>Methods</p> <p>Here we describe a method to distinguish very likely endogenous from uncertain endogenous CK's in a mass spectrometry based proteomic study. In this study the CK identifications from 102 human corneal samples were compared with the number of human CK identifications found in 102 murine thymic lymphoma samples.</p> <p>Results</p> <p>It was anticipated that the CK's that were identified with a frequency of <5%, <it>i.e. </it>in less than one spot for every 20 spots analysed, are very likely to be endogenous and thereby represent a 'biologically significant' identification. CK's observed with a frequency >5% are uncertain endogenous since they may represent true endogenous CK's but the probability of contamination is high and therefore needs careful consideration. This was confirmed by comparison with a study of mouse samples where all identified human CK's are contaminants.</p> <p>Conclusions</p> <p>CK's 3, 4, 7, 8, 11, 12, 13, 15, 17, 18, 19, 20 and 23 are very likely to be endogenous proteins if identified in a corneal study, whilst CK's 1, 2e, 5, 6A, 9, 10, 14 and 16 may be endogenous although some are likely to be contaminants in a proteomic study. Further immunohistochemical analysis and a search of the current literature largely supported the distinction.</p
Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage
Zika virus (ZIKV) is a mosquito-transmitted flavivirus found in both Africa and Asia. Human infection with the virus may result in a febrile illness similar to dengue fever and many other tropical infections found in these regions. Previously, little was known about the genetic relationships between ZIKV strains collected in Africa and those collected in Asia. In addition, the geographic origins of the strains responsible for the recent outbreak of human disease on Yap Island, Federated States of Micronesia, and a human case of ZIKV infection in Cambodia were unknown. Our results indicate that there are two geographically distinct lineages of ZIKV (African and Asian). The virus has circulated in Southeast Asia for at least the past 50 years, whereupon it was introduced to Yap Island resulting in an epidemic of human disease in 2007, and in 2010 was the cause of a pediatric case of ZIKV infection in Cambodia. This study also highlights the danger of ZIKV introduction into new areas and the potential for future epidemics of human disease
Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction
<p>Abstract</p> <p>Background</p> <p>Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At least four other methods have been developed recently that likewise attempt to predict CTL epitopes: EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of prediction methods, objective benchmarks and standardized performance measures are needed. Here, we develop such large-scale benchmark and corresponding performance measures and report the performance of an updated version 1.2 of NetCTL in comparison with the four other methods.</p> <p>Results</p> <p>We define a number of performance measures that can handle the different types of output data from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes; all other 9 mers are considered non-epitopes. In the RANK measure, we compare two methods at a time and count how often each of the methods rank the epitope highest. In another measure, we find the specificity of the methods at three predefined sensitivity values. Lastly, for each method, we calculate the percentage of known epitopes that rank within the 5% peptides with the highest predicted score.</p> <p>Conclusion</p> <p>NetCTL-1.2 is demonstrated to have a higher predictive performance than EpiJen, MAPPP, MHC-pathway, and WAPP on all performance measures. The higher performance of NetCTL-1.2 as compared to EpiJen and MHC-pathway is, however, not statistically significant on all measures. In the large-scale benchmark calculation consisting of 216 known HIV epitopes covering all 12 recognized HLA supertypes, the NetCTL-1.2 method was shown to have a sensitivity among the 5% top-scoring peptides above 0.72. On this dataset, the best of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at <url>http://www.cbs.dtu.dk/services/NetCTL</url>.</p> <p>All used datasets are available at <url>http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php</url>.</p
NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence
Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking.Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis.Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan
Tribbles homolog 3 denotes a poor prognosis in breast cancer and is involved in hypoxia response
Hypoxia in solid tumors is associated with treatment resistance, resulting in poor prognosis. Tribbles homolog 3 (TRIB3) is induced during hypoxia and is involved in multiple cellular pathways involved in cell survival. Here, we investigated the role of TRIB3 in breast cancer. TRIB3 mRNA expression was measured in breast tumor tissue from 247 patients and correlated with clinicopathological parameters and clinical outcome. Furthermore, we studied TRIB3 expression regulation in cell lines, xenografts tissues and human breast cancer material using Reverse transcriptase, quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. Finally, the effect of small interfering RNA (siRNA) mediated TRIB3 knockdown on hypoxia tolerance was assessed. Breast cancer patients with low, intermediate or high TRIB3 expression exhibited a mean disease free survival (DFS) of 80 (95% confidence interval [CI] = 74 to 86), 74 (CI = 67 to 81), and 63 (CI = 55 to 71) months respectively (P = .002, Mantel-Cox log-rank). The prognostic value of TRIB3 was limited to those patients that had received radiotherapy as part of their primary treatment (n = 179, P = .005) and remained statistically significant after correction for other clinicopathological parameters (DFS, Hazard Ratio = 1.90, CI = 1.17 to 3.08, P = .009). In breast cell lines TRIB3 expression was induced by hypoxia, nutrient starvation, and endoplasmic reticulum stress in an hypoxia inducible factor 1 (HIF-1) independent manner. TRIB3 induction after hypoxia did not increase with decreasing oxygen levels. In breast tumor xenografts and human breast cancer tissues TRIB3 co-localized with the hypoxic cell marker pimonidazole. The induction of TRIB3 by hypoxia was shown to be regulated via the PERK/ATF4/CHOP pathway of the unfolded protein response and knockdown of TRIB3 resulted in a dose-dependent increase in hypoxia sensitivity. TRIB3 is independently associated with poor prognosis of breast cancer patients, possibly through its association with tumor cell hypoxi
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres
Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration
Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2
BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands
Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research
This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance
- …