9 research outputs found

    A Test of Evolutionary Policing Theory with Data from Human Societies

    Get PDF
    In social groups where relatedness among interacting individuals is low, cooperation can often only be maintained through mechanisms that repress competition among group members. Repression-of-competition mechanisms, such as policing and punishment, seem to be of particular importance in human societies, where cooperative interactions often occur among unrelated individuals. In line with this view, economic games have shown that the ability to punish defectors enforces cooperation among humans. Here, I examine a real-world example of a repression-of-competition system, the police institutions common to modern human societies. Specifically, I test evolutionary policing theory by comparing data on policing effort, per capita crime rate, and similarity (used as a proxy for genetic relatedness) among citizens across the 26 cantons of Switzerland. This comparison revealed full support for all three predictions of evolutionary policing theory. First, when controlling for policing efforts, crime rate correlated negatively with the similarity among citizens. This is in line with the prediction that high similarity results in higher levels of cooperative self-restraint (i.e. lower crime rates) because it aligns the interests of individuals. Second, policing effort correlated negatively with the similarity among citizens, supporting the prediction that more policing is required to enforce cooperation in low-similarity societies, where individuals' interests diverge most. Third, increased policing efforts were associated with reductions in crime rates, indicating that policing indeed enforces cooperation. These analyses strongly indicate that humans respond to cues of their social environment and adjust cheating and policing behaviour as predicted by evolutionary policing theory

    Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium

    No full text
    Research on mutualism seeks to explain how cooperation can be maintained when uncooperative mutants co-occur with cooperative kin. Gains and losses of the gene modules required for cooperation punctuate symbiont phylogenies and drive lifestyle transitions between cooperative symbionts and uncooperative free-living lineages over evolutionary time. Yet whether uncooperative symbionts commonly evolve from within cooperative symbiont populations or from within distantly related lineages with antagonistic or free-living lifestyles (i.e., third-party mutualism exploiters or parasites), remains controversial. We use genomic data to show that genotypes that differ in the presence or absence of large islands of symbiosis genes are common within a single wild recombining population of Mesorhizobium symbionts isolated from host tissues and are an important source of standing heritable variation in cooperation in this population. In a focal population of Mesorhizobium , uncooperative variants that lack a symbiosis island segregate at 16% frequency in nodules, and genome size and symbiosis gene number are positively correlated with cooperation. This finding contrasts with the genomic architecture of variation in cooperation in other symbiont populations isolated from host tissues in which the islands of genes underlying cooperation are ubiquitous and variation in cooperation is primarily driven by allelic substitution and individual gene gain and loss events. Our study demonstrates that uncooperative mutants within mutualist populations can comprise a significant component of genetic variation in nature, providing biological rationale for models and experiments that seek to explain the maintenance of mutualism in the face of non-cooperators
    corecore