29 research outputs found

    Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area.

    Get PDF
    Grapes of “Grillo” variety, used to produce Marsala wine, were harvested from five vineyards different for climatic and agronomic parameters, in order to obtain a first mapping of lactic acid bacteria (LAB) inhabiting the production area. Marsala base wine production was followed at large-scale and two experimental vinifications, different for lysozyme and SO2 concentration and combination, were carried out at pilot-plant scale. LAB communities and conventional chemical parameters were periodically analysed. LAB were found on grapes at an average concentration of about 102 CFU g-1 which decreased during the transformation process. A total of 146 colonies were collected, but only 35 were recognized as presumptive LAB. On the basis of phenotypic differences and isolation source, 16 isolates were then subjected to genotypic identification and gathered into the following species: Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Enterococcus faecium, Leuconostoc fallax and Sporalactobacillus nakayamae subsp. nakayamae. Lactococcus lactis subsp. lactis strains was the species most frequently isolated during winemaking showing the highest resistance to SO2 and lysozyme

    Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

    Get PDF
    Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols

    A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using Pseudomonas putida 4-ethylphenol methylene hydroxylase (4-EPMH)

    Get PDF
    Brettanomyces/Dekkera bruxellensis is a cause of major concern for the winemaking industry worldwide. If a slight presence of this spoilage yeast in red wine adds a Brett character, a strong contamination has irreversible and detrimental effects on the organoleptic qualities due to the production of volatile phenols such as 4-ethylphenol. Time is a key factor in the treatment of B. bruxellensis contaminations. Nowadays, the diagnostic and quantification resources available are time consuming and too expensive, making them either inadequate or inaccessible to most of the winemakers. This study was focused on a new, easy to use, inexpensive method that could allow winemakers to directly detect B. bruxellensis contamination in red wine at an early stage, hence, reducing wine spoilage. In this work, the ability of Pseudomonas putida 4-ethylphenol methylene hydroxylase was tested in order to catabolize the 4-ethylphenol and to elaborate an enzymatic assay with the purpose of detecting early contaminations by B. bruxellensis in red wine. We have developed a colorimetric enzymatic assay, based on the redox state of the 4-ethylphenol methylene hydroxylase co-factor, cytochrome C, that can detect and quantify low concentrations of 4-ethylphenol. The range of concentrations detected is well below the level detectable by the human nose. Combined to an enrichment step, this method allows the detection of B. bruxellensis at an initial concentration of less than 10 cells per ml

    The wine and beer yeast Dekkera bruxellensis.

    No full text
    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae, and especially known for two important characteristics: on one hand it is considered to be one of the main spoilage organisms in the wine and bioethanol industry, on the other hand it is "indispensable" as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model to study yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas which are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. This article is protected by copyright. All rights reserved
    corecore