8 research outputs found

    Corrigendum: Graphical comparison of image analysis and laser diffraction particle size analysis data obtained from the measurements of nonspherical particle systems

    No full text
    The purpose of this paper is to describe results from the use of a set of Excel macros written to facilitate the comparison of image analysis (IA) and laser diffraction (LD) particle size analysis (psa) data. Measurements were made on particle systems of differing morphological characteristics including differing average aspect ratios, particle size distribution widths and modalities. The IA and LD psa data were plotted on the same graph treating both the weighting and the size unit of the LD psa data as unknowns. Congruency of the IA and LD plots was considered to indicate successful experimental determination of the weighting and size unit. The weighting of the resulting LD psa data (so-called volume-weighted) is shown to be better correlated with IA area-weighted data. The size unit of LD psa data is shown to be a function of particle shape. In the case of high aspect ratio particles characterized by approximately rectangular faces the LD psa data is shown to be a function of multiple particle dimensions being related to IA size descriptors through a simple variation of the law of mixtures. The results demonstrate that successful correlations between IA and LD psa data can be realized in the case of non-spherical particle systems even in the case of high aspect ratio particles; however, the inappropriateness of the application of the Equivalent Spherical Volume Diameter and the Random Particle Orientation assumptions to the interpretation of the LD psa results must first be acknowledged. Correlation permits cross validation of IA and LD psa results increasing confidence in the accuracy of the data from each orthogonal technique

    Commerical reference shape standards use in the study of particle shape effect on laser diffraction particle size analysis

    No full text
    The purpose of this paper is to describe the use of LGC Promochem AEA 1001 to AEA 1003 monosized fiberanalog shape standards in the study of the effect of particle shape on laser diffraction (LD) particle size analysis (psa). The psa of the AEA standards was conducted using LD psa systems from Beckman Coulter, Horiba, and Malvern Instruments. Flow speed settings, sample refractive index values, and sample cell types were varied to examine the extent to which the shape effect on LD psa results is modified by these variables. The volume and number probability plots resulting from these measurements were each characterized by a spread in the particle size distribution that roughly extended from the breadth to the longest dimension of the particles. For most of the selected sample refractive index values, the volume probability plots were characterized by apparent bimodal distributions. The results, therefore, provide experimental verification of the conclusions from theoretical studies of LD psa system response to monosized elliptical particles in which this apparent bimodality was the predicted result in the case of flow-oriented particles. The data support the findings from previous studies conducted over the past 10 years that have called into question the verity of the tenets of, and therefore the value of the application of, the equivalent spherical volume diameter theory and the random particle orientation model to the interpretation of LD psa results from measurements made on nonspherical particles

    An automated single-particle tracker: application to characterization of non-azimuthal motion in Couette flows at low Reynolds number

    No full text
    We describe an experiment that allows us to record 3-dimensional trajectories of single particles in Couette shear flows, at low Reynolds number. The core of the apparatus is a Couette cell with transparent contrarotating cylinders. Fluorescent spherical particles are used as tracers. A single tracer is imaged onto a webcam, equipped with a home-made autofocus system. For a given average shear rate, tracking of an individual tracer is performed automatically by driving the amount of contrarotation between both cylinders and the position of the webcam. The performance of the tracker is illustrated through examples of trajectories of neutrally buoyant tracers in a Newtonian fluid. The setup is mostly aimed at characterizing complex flows in non-colloidal concentrated suspensions and wet granular materials. We show examples of 3d trajectories in a dense suspension of 200 lm spherical grains, revealing details of the short-scale diffusive- like particle motion, together with flow localization and large-scale non-azimuthal flow patterns

    ATLAS: Technical proposal for a general-purpose p p experiment at the Large Hadron Collider at CERN

    No full text

    ATLAS calorimeter performance

    No full text

    ATLAS computing technical proposal

    No full text
    corecore