148 research outputs found
Investigation of the biomechanical effect of variable stiffness shoe on external knee adduction moment in various dynamic exercises
10.1186/1757-1146-6-39Journal of Foot and Ankle Research61
Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway
Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably, the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results could have similar implications for genome stability mechanisms in vertebrate and mammalian cells
Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta - regulation by selective estrogen receptor modulators and importance in breast cancer
Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents
Epithelial cancers in the post-genomic era: should we reconsider our lifestyle?
The age-related epithelial cancers of the breast, colorectum and prostate are the most prevalent and are increasing in our aging populations. Epithelial cells turnover rapidly and mutations naturally accumulate throughout life. Most epithelial cancers arise from this normal mutation rate. All elderly individuals will harbour many cells with the requisite mutations and most will develop occult neoplastic lesions. Although essential for initiation, these mutations are not sufficient for the progression of cancer to a life-threatening disease. This progression appears to be dependent on context: the tissue ecosystem within individuals and lifestyle exposures across populations of individuals. Together, this implies that the seeds may be plentiful but they only germinate in the right soil. The incidence of these cancers is much lower in Eastern countries but is increasing with Westernisation and increases more acutely in migrants to the West. A Western lifestyle is strongly associated with perturbed metabolism, as evidenced by the epidemics of obesity and diabetes: this may also provide the setting enabling the progression of epithelial cancers. Epidemiology has indicated that metabolic biomarkers are prospectively associated with cancer incidence and prognosis. Furthermore, within cancer research, there has been a rediscovery that a switch in cell metabolism is critical for cancer progression but this is set within the metabolic status of the host. The seed may only germinate if the soil is fertile. This perspective brings together the different avenues of investigation implicating the role that metabolism may play within the context of post-genomic concepts of cancer
Microscopic aspect of interface magnetic anisotropy induced by a Pd adlayer on Ni/Cu(001) films
We performed comprehensive studies on the magnetic influence of a thin (5 A) Pd adlayer on epitaxial Ni/Cu films using x-ray magnetic circular dichroism (XMCD) at the Ni L-2,L-3 and Pd M-2,M-3 edges. The magnetic anisotropy was found to be greatly affected by the adlayer. The XMCD shows that the orbital magnetic moment m(o) of Ni is enhanced and a considerable magnetic moment is induced at Pd, resulting in an interface magnetic anisotropy, which well explains the anisotropy changes. We also found that a certain amount of charges are transferred from Pd 4d to Ni 3d at the interface. The transferred charges mainly reduce the weight of the Ni 3d(8) state and increase m(o).X115sciescopu
- …