159 research outputs found
The Arc of Liberalism and the Career of Harrison “Pete” Williams
The following address was delivered by Michael Kazin of Georgetown University at the opening of the spring 2009 exhibit, "Crossroads: Senator Harrison A. Williams Jr. and Great Society Liberalism, 1959-1981," at Rutgers –New Brunswick’s Alexander Library, January 27, 2009. The exhibition, which runs from January until August 1, 2009, commemorates the completion of a three-year effort to organize the papers of U.S. Senator Harrison Williams, Jr. of New Jersey. These papers are held in Rutgers University Libraries’ Special Collections and University Archives
Improved background subtraction for the Sloan Digital Sky Survey images
We describe a procedure for background subtracting Sloan Digital Sky Survey
(SDSS) imaging that improves the resulting detection and photometry of large
galaxies on the sky. Within each SDSS drift scan run, we mask out detected
sources and then fit a smooth function to the variation of the sky background.
This procedure has been applied to all SDSS-III Data Release 8 images, and the
results are available as part of that data set. We have tested the effect of
our background subtraction on the photometry of large galaxies by inserting
fake galaxies into the raw pixels, reanalyzing the data, and measuring them
after background subtraction. Our technique results in no size-dependent bias
in galaxy fluxes up to half-light radii of 100 arcsec; in contrast, for
galaxies of that size the standard SDSS photometric catalog underestimates
fluxes by about 1.5 mag. Our results represent a substantial improvement over
the standard SDSS catalog results and should form the basis of any analysis of
nearby galaxies using the SDSS imaging data.Comment: accepted by the Astronomical Journa
The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature
We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H₀ = 67.15 ± 0.98 km s⁻¹Mpc⁻¹. Allowing the equation of state of dark energy to vary, we obtain wDE = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of ΩK = −0.0043 ± 0.0047
The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae
Astronomical observations suggest that today's Universe is dominated by a
dark energy of unknown physical origin. One of the most notable consequences in
many models is that dark energy should cause the expansion of the Universe to
accelerate: but the expansion rate as a function of time has proven very
difficult to measure directly. We present a new determination of the cosmic
expansion history by combining distant supernovae observations with a
geometrical analysis of large-scale galaxy clustering within the WiggleZ Dark
Energy Survey, using the Alcock-Paczynski test to measure the distortion of
standard spheres. Our result constitutes a robust and non-parametric
measurement of the Hubble expansion rate as a function of time, which we
measure with 10-15% precision in four bins within the redshift range 0.1 < z <
0.9. We demonstrate that the cosmic expansion is accelerating, in a manner
independent of the parameterization of the cosmological model (although
assuming cosmic homogeneity in our data analysis). Furthermore, we find that
this expansion history is consistent with a cosmological-constant dark energy.Comment: 13 pages, 7 figures, accepted for publication by MNRA
Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters
We place constraints on the average density (Omega_m) and clustering
amplitude (sigma_8) of matter using a combination of two measurements from the
Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and
the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to
cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample
of clusters is the maxBCG sample, with cluster masses derived from weak
gravitational lensing. We construct non-linear galaxy bias models using the
Halo Occupation Distribution (HOD) to fit both w_p and M/N for different
cosmological parameters. HOD models that match the same two-point clustering
predict different numbers of galaxies in massive halos when Omega_m or sigma_8
is varied, thereby breaking the degeneracy between cosmology and bias. We
demonstrate that this technique yields constraints that are consistent and
competitive with current results from cluster abundance studies, even though
this technique does not use abundance information. Using w_p and M/N alone, we
find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of
Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data,
these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All
errors are 1-sigma. The systematic uncertainties that the M/N technique are
most sensitive to are the amplitude of the bias function of dark matter halos
and the possibility of redshift evolution between the SDSS Main sample and the
maxBCG sample. Our derived constraints are insensitive to the current level of
uncertainties in the halo mass function and in the mass-richness relation of
clusters and its scatter, making the M/N technique complementary to cluster
abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap
Ameliorating Systematic Uncertainties in the Angular Clustering of Galaxies: A Study using SDSS-III
We investigate the effects of potential sources of systematic error on the
angular and photometric redshift, z_phot, distributions of a sample of redshift
0.4 < z < 0.7 massive galaxies whose selection matches that of the Baryon
Oscillation Spectroscopic Survey (BOSS) constant mass sample. Utilizing over
112,778 BOSS spectra as a training sample, we produce a photometric redshift
catalog for the galaxies in the SDSS DR8 imaging area that, after masking,
covers nearly one quarter of the sky (9,913 square degrees). We investigate
fluctuations in the number density of objects in this sample as a function of
Galactic extinction, seeing, stellar density, sky background, airmass,
photometric offset, and North/South Galactic hemisphere. We find that the
presence of stars of comparable magnitudes to our galaxies (which are not
traditionally masked) effectively remove area. Failing to correct for such
stars can produce systematic errors on the measured angular auto-correlation
function, w, that are larger than its statistical uncertainty. We describe how
one can effectively mask for the presence of the stars, without removing any
galaxies from the sample, and minimize the systematic error. Additionally, we
apply two separate methods that can be used to correct the systematic errors
imparted by any parameter that can be turned into a map on the sky. We find
that failing to properly account for varying sky background introduces a
systematic error on w. We measure w, in four z_phot slices of width 0.05
between 0.45 < z_phot < 0.65 and find that the measurements, after correcting
for the systematic effects of stars and sky background, are generally
consistent with a generic LambdaCDM model, at scales up to 60 degrees. At
scales greater than 3 degrees and z_phot > 0.5, the magnitude of the
corrections we apply are greater than the statistical uncertainty in w.Comment: Accepted by MNRA
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample
We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe
The clustering of massive galaxies at z~0.5 from the first semester of BOSS data
We calculate the real- and redshift-space clustering of massive galaxies at
z~0.5 using the first semester of data by the Baryon Oscillation Spectroscopic
Survey (BOSS). We study the correlation functions of a sample of 44,000 massive
galaxies in the redshift range 0.4<z<0.7. We present a halo-occupation
distribution modeling of the clustering results and discuss the implications
for the manner in which massive galaxies at z~0.5 occupy dark matter halos. The
majority of our galaxies are central galaxies living in halos of mass
10^{13}Msun/h, but 10% are satellites living in halos 10 times more massive.
These results are broadly in agreement with earlier investigations of massive
galaxies at z~0.5. The inferred large-scale bias (b~2) and relatively high
number density (nbar=3e-4 h^3 Mpc^{-3}) imply that BOSS galaxies are excellent
tracers of large-scale structure, suggesting BOSS will enable a wide range of
investigations on the distance scale, the growth of large-scale structure,
massive galaxy evolution and other topics.Comment: 11 pages, 12 figures, matches version accepted by Ap
- …