71 research outputs found
High Prevalence of Both Humoral and Cellular Immunity to Zaire ebolavirus among Rural Populations in Gabon
To better understand Zaire ebolavirus (ZEBOV) circulation and transmission to humans, we conducted a large serological survey of rural populations in Gabon, a country characterized by both epidemic and non epidemic regions. The survey lasted three years and covered 4,349 individuals from 220 randomly selected villages, representing 10.7% of all villages in Gabon. Using a sensitive and specific ELISA method, we found a ZEBOV-specific IgG seroprevalence of 15.3% overall, the highest ever reported. The seroprevalence rate was significantly higher in forested areas (19.4%) than in other ecosystems, namely grassland (12.4%), savannah (10.5%), and lakeland (2.7%). No other risk factors for seropositivity were found. The specificity of anti-ZEBOV IgG was confirmed by Western blot in 138 individuals, and CD8 T cells from seven IgG+ individuals were shown to produce IFN-γ after ZEBOV stimulation. Together, these findings show that a large fraction of the human population living in forested areas of Gabon has both humoral and cellular immunity to ZEBOV. In the absence of identified risk factors, the high prevalence of “immune” persons suggests a common source of human exposure such as fruits contaminated by bat saliva. These findings provide significant new insights into ZEBOV circulation and human exposure, and raise important questions as to the human pathogenicity of ZEBOV and the existence of natural protective immunization
Variations in Human Herpesvirus Type 8 Seroprevalence in Native Americans, South America
To determine the epidemiology of human herpesvirus type 8 (HHV-8) among non-Amazonian native populations, we conducted a cross-sectional study in Brazil, Bolivia, and Paraquay. Our data show striking ethnic and geographic variations in the distribution of HHV-8 seroprevalences in Amazonian (77%) and non-Amazonian native populations (range 0%–83%)
Prevalence, genetic diversity and antiretroviral drugs resistance-associated mutations among untreated HIV-1-infected pregnant women in Gabon, central Africa
BACKGROUND: In Africa, the wide genetic diversity of HIV has resulted in
emergence of new strains, rapid spread of this virus in sub-Saharan populations
and therefore spread of the HIV epidemic throughout the continent.
METHODS: To determine the prevalence of antibodies to HIV among a high-risk
population in Gabon, 1098 and 2916 samples were collected from pregnant women in
2005 and 2008, respectively. HIV genotypes were evaluated in 107 HIV-1-positive
samples to determine the circulating subtypes of strains and their resistance to
antiretroviral drugs (ARVs).
RESULTS: The seroprevalences were 6.3% in 2005 and 6.0% in 2008. The main subtype
was recombinant CRF02_AG (46.7%), followed by the subtypes A (19.6%), G (10.3%),
F (4.7%), H (1.9%) and D (0.9%) and the complex recombinants CRF06_cpx (1.9%) and
CRF11_cpx (1.9%); 12.1% of subtypes could not be characterized. Analysis of ARVs
resistance to the protease and reverse transcriptase coding regions showed
mutations associated with extensive subtype polymorphism. In the present study,
the HIV strains showed reduced susceptibility to ARVs (2.8%), particularly to
protease inhibitors (1.9%) and nucleoside reverse transcriptase inhibitors
(0.9%).
CONCLUSIONS: The evolving genetic diversity of HIV calls for continuous
monitoring of its molecular epidemiology in Gabon and in other central African
countries
HTLV-1 Evades Type I Interferon Antiviral Signaling by Inducing the Suppressor of Cytokine Signaling 1 (SOCS1)
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1—SOCS1—was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-α/β and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-β production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1
Porosity of temporary denture soft liners containing antifungal agents
ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion
ORIGIN AND PREVALENCE OF HUMAN T-LYMPHOTROPIC VIRUS TYPE 1 (HTLV-1) AND TYPE 2 (HTLV-2) AMONG INDIGENOUS POPULATIONS IN THE AMERICAS
Human T-lymphotropic virus type 1 (HTLV-1) is found in indigenous peoples of the Pacific Islands and the Americas, whereas type 2 (HTLV-2) is widely distributed among the indigenous peoples of the Americas, where it appears to be more prevalent than HTLV-1, and in some tribes of Central Africa. HTLV-2 is considered ancestral in the Americas and is transmitted to the general population and injection drug users from the indigenous population. In the Americas, HTLV-1 has more than one origin, being brought by immigrants in the Paleolithic period through the Bering Strait, through slave trade during the colonial period, and through Japanese immigration from the early 20th century, whereas HTLV-2 was only brought by immigrants through the Bering Strait. The endemicity of HTLV-2 among the indigenous people of Brazil makes the Brazilian Amazon the largest endemic area in the world for its occurrence. A review of HTLV-1 in all Brazilian tribes supports the African origin of HTLV-1 in Brazil. The risk of hyperendemicity in these epidemiologically closed populations and transmission to other populations reinforces the importance of public health interventions for HTLV control, including the recognition of the infection among reportable diseases and events
- …