2,327 research outputs found

    High-resolution N-body Simulations of Galactic Cannibalism: The Magellanic Stream

    Full text link
    Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-space history of a satellite in the midst of being cannibalised by its host galaxy. The availability of improved observational data for the Magellanic Stream and parallel advances in computational power has led us to revisit the canonical tidal model describing the disruption of the Small Magellanic Cloud and the consequent formation of the Stream. We suggest improvements to the tidal model in light of these recent advances.Comment: 6 pages, 4 figures, LaTeX (gcdv.sty). Refereed contribution to the 5th Galactic Chemodynamics conference held in Swinburne, July 2003. Accepted for publication in PASA. Version with high resolution figures available at http://astronomy.swin.edu.au/staff/tconnors/publications.htm

    Galactic Cannibalism: the Origin of the Magellanic Stream

    Full text link
    We are in a privileged location in the Universe which allows us to observe galactic interactions from close range -- the merger of our two nearest dwarf satellite galaxies, the LMC and SMC. It is important to understand the local merger process before we can have confidence in understanding mergers at high redshift. We present high resolution Nbody+SPH simulations of the disruption of the LMC and SMC and the formation of the Magellanic Stream, and discuss the implications for galaxy formation and evolution.Comment: 2 pages, 1 figure, to appear in "The Evolution of Galaxies II: Basic Building Blocks", (2002) ed. M. Sauvage et al. (Kluwer

    Simulating a White Dwarf-dominated Galactic Halo

    Full text link
    Observational evidence has suggested the possibility of a Galactic halo which is dominated by white dwarfs (WDs). While debate continues concerning the interpretation of this evidence, it is clear that an initial mass function (IMF) biased heavily toward WD precursors (1 < m/Msol < 8), at least in the early Universe, would be necessary in generating such a halo. Within the framework of homogeneous, closed-box models of Galaxy formation, such biased IMFs lead to an unavoidable overproduction of carbon and nitrogen relative to oxygen (as measured against the abundance patterns in the oldest stars of the Milky Way). Using a three-dimensional Tree N-body smoothed particle hydrodynamics code, we study the dynamics and chemical evolution of a galaxy with different IMFs. Both invariant and metallicity-dependent IMFs are considered. Our variable IMF model invokes a WD-precursor-dominated IMF for metallicities less than 5% solar (primarily the Galactic halo), and the canonical Salpeter IMF otherwise (primarily the disk). Halo WD density distributions and C,N/O abundance patterns are presented. While Galactic haloes comprised of ~5% (by mass) of WDs are not supported by our simulations, mass fractions of ~1-2% cannot be ruled out. This conclusion is consistent with the present-day observational constraints.Comment: accepted for publication in MNRA

    Are Red Tidal Features Unequivocal Signatures of Major Dry Mergers?

    Get PDF
    We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, recently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e. a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10^10 Msun, and the tidal debris reach the surface brightness of mu_R~27 mag arcsec^-2. Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in ellipticals at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.Comment: 7 pages, 7 figures, accepted for publication in Ap

    Chemodynamical Simulations of Elliptical Galaxies

    Get PDF
    We review recent developments in the field of chemodynamical simulations of elliptical galaxies, highlighting (in an admittedly biased fashion) the work conducted with our cosmological N-body/SPH code GCD+. We have demonstrated previously the recovery of several primary integrated early-type system scaling relations (e.g. colour-magnitude relation, L_X-T_X-[Fe/H]_X) when employing a phenomenological AGN heating scheme in conjunction with a self-consistent treatment of star formation, supernovae feedback, radiative cooling, chemical enrichment, and stellar/X-ray population synthesis. Here we emphasise characteristics derived from the full spatial information contained within the simulated dataset, including stellar and coronal morphologies, metallicity distribution functions, and abundance gradients.Comment: to appear in the proceedings of Chemodynamics: from first stars to local galaxies, Lyon, Franc

    Mapping Substructures in Dark Matter Halos

    Full text link
    We present a detailed study of the real and integrals-of-motion space distributions of a satellite obtained from a self-consistent high-resolution simulation of a galaxy cluster and re-simulated using various analytical halo potentials. We found that the disrupted satellite appears as a coherent structure in integrals-of-motion space in all models (``live'' and analytical potential) although the distribution is significantly smeared for the live host halo. Further the primary mechanism for this smearing is the mass growth of the host, which changes both the energy and angular momentum of the satellite debris. Hence, this must be considered when searching for (stellar) streams with future observational experiments such as RAVE and GAIA.Comment: 5 pages, 6 figures, MNRAS accepted - minor editing without changing the conclusions, a high-resolution version of the paper is available from http://astronomy.swin.edu.au/~sgill/downloads/downloads.htm
    • 

    corecore