14,741 research outputs found

    Comment on ``Spin-glass transition of the three-dimensional Heisenberg spin glass''

    Full text link
    Campos et al. [Phys. Rev. Lett. 97 (2006) 217204] claim that in the 3d Heisenberg Spin Glass, chiral and spin sector ordering temperatures are identical. We point out that in their analysis of their numerical data key assumptions are made which are unjustified.Comment: published versio

    Ordering of the Heisenberg spin glass in two dimensions

    Full text link
    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbor Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behavior of the spin and the chirality correlation lengths. In order to observe the true asymptotic behavior, fairly large system size L\gsim 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than spin correlation length, whereas at lower temperatures below the crossover temperature T_\times, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T_\times to be \nu_SG=0.9+-0.2 and \nu_CG=2.1+-0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behavior realized below T_\times.Comment: to appear in a special issue of J. Phys.

    Ordering of the three-dimensional Heisenberg spin glass in magnetic fields

    Full text link
    Spin and chirality orderings of the three-dimensional Heisenberg spin glass are studied under magnetic fields in light of the recently developed spin-chirality decoupling-recoupling scenario. It is found by Monte Carlo simulations that the chiral-glass transition and the chiral-glass ordered state, which are essentially of the same character as their zero-field counterparts, occur under magnetic fields. Implication to experimental phase diagram is discussed.Comment: 5 pages, 3 figure

    Multiple-q states and skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields

    Full text link
    Ordering of the frustrated classical Heisenberg model on the triangular-lattice with an incommensurate spiral spin structure is studied under magnetic fields by means of a mean-field analysis and a Monte Carlo simulation. Several types of multiple-q states including the "skyrmion-lattice" state is observed in addition to the standard single-q state. In contrast to the Dzyaloshinskii-Moriya interaction driven system, the present model allows both skyrmions and anti-skyrmions, together with a new thermodynamic phase where skyrmion and anti-skyrmion lattices form a domain state.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Amorphous Vortex Glass Phase in Strongly Disordered Superconductors

    Full text link
    We introduce a model describing vortices in strongly disordered three-dimensional superconductors. The model focuses on the topological defects, i.e., dislocation lines, in an elastic description of the vortex lattice. The model is studied using Monte Carlo simulations, revealing a glass phase at low temperatures, separated by a continuous phase transition to the high temperature resistive vortex liquid phase. The critical exponents nu ~ 1.3 and eta ~ -0.4 characterizing the transition are obtained from finite size scaling.Comment: 4 pages, 4 figure

    Spin Stiffness of Stacked Triangular Antiferromagnets

    Full text link
    We study the spin stiffness of stacked triangular antiferromagnets using both heat bath and broad histogram Monte Carlo methods. Our results are consistent with a continuous transition belonging to the chiral universality class first proposed by Kawamura.Comment: 5 pages, 7 figure

    Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy

    Full text link
    A series of structural polytypes formed in an Mg-1at.%Zn-2at.%Y alloy has been identified, which are reasonably viewed as long-period stacking derivatives of the hcp Mg structure with alternate AB stacking of the close-packed atomic layers. Atomic-resolution Z-contrast imaging clearly revealed that the structures are long-period chemical-ordered as well as stacking-ordered; unique chemical order along the stacking direction occurs as being synchronized with a local faulted stacking of AB'C'A, where B' and C' layers are commonly enriched by Zn/Y atoms.Comment: 8 pages, 4 figures; submitted to Philosophical Magazine Letter

    Dynamical simulation of spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses

    Full text link
    Spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses are studied with and without randaom magnetic anisotropy by dynamical Monte Carlo simulations. In isotropic case, clear evidence of a finite-temperature chiral-glass transition is presented. While the spin autocorrelation exhibits only an interrupted aging, the chirality autocorrelation persists to exhibit a pronounced aging effect reminisecnt of the one observed in the mean-field model. In anisotropic case, asymptotic mixing of the spin and the chirality is observed in the off-equilibrium dynamics.Comment: 4 pages including 5 figures, LaTex, to appear in Phys. Rev. Let

    Development of displacement- and frequency-noise-free interferometer in 3-D configuration for gravitational wave detection

    Get PDF
    The displacement- and frequency-noise-free interferometer (DFI) is a multiple laser interferometer array for gravitational wave detection free from both the displacement noise of optics and laser frequency noise. So far, partial experimental demonstrations of DFI have been done in 2-D table top experiments. In this paper, we report the complete demonstration of a 3-D DFI. The DFI consists of four Mach-Zehnder interferometers with four mirrors and two beamsplitters. The displacement noises both of mirrors and beamsplitters were suppressed by up to 40 dB. The non-vanishing DFI response to a gravitational wave was successfully confirmed using multiple electro-optic modulators and computing methods

    Anomalous U(1) D-term Contribution in Type I String Models

    Get PDF
    We study the DD-term contribution for anomalous U(1) symmetries in type I string models and derive general formula for the DD-term contribution, assuming that the dominant source of SUSY breaking is given by FF-terms of the dilaton, (overall) moduli or twisted moduli fields. On the basis of the formula, we also point out that there are several different features from the case in heterotic string models. The differences originate from the different forms of K\"ahler potential between twisted moduli fields in type I string models and the dilaton field in heterotic string models.Comment: 16 pages, latex, no figur
    corecore